Is there more inorganic selenium in Seleno-Yeasts than previously believed?


Selenium enriched yeasts_Selisseo Technical Article

Article published in All About Feed | Volume 30, No. 2, 2022


For many years, the efficiency of organic selenium (Se) sources, and of seleno-yeasts (SY) in particular, has been linked to the level of selenomethionine (SeMet), making the evaluation of the Se content and its form crucial to ensure their bio-efficacy. With this composition and product specification being so critical, seleno-yeasts have a regulatory minimum level of 97-99% of total Se in the form of organic Se, as well as a minimum of 63% of total Se as SeMet. Recent analytical improvements allowed to measure an additional inorganic Se form, that is, Elemental Se (Seo ), previously uncharacterized in products. When applied to seleno-yeasts, it better differentiate inorganic and organic selenium and therefore, Seo should now be taken into account to obtain a precise evaluation of the variable composition of  seleno-yeasts. New questions could also arise related to the categorization of these Se forms and their nutritional significance.


Selenium is an essential trace mineral for animal nutrition, largely because of its key role in antioxidant defense, immunity and inflammatory modulation processes. Since most feed ingredients throughout the world are Se-deficient, Se dietary supplementation is a standard commercial practice. Se is included in livestock premixes in either inorganic forms (mainly sodium selenite), which are known to have a very low bio-efficacy, or organic forms, such as inactivated seleno-yeasts or in pure chemically synthetized forms (SeMet, hydroxy-selenomethionine: OH-SeMet), which are known to have a higher bio-efficacy.

It is well known that the SeMet content of seleno-yeasts  varies to a great extent from supplier to supplier, as well as from production batch-to-batch (Fagan et al. 2015). The manufacturing process for seleno-yeasts involves feeding a growing yeast, mainly Saccharomyces cerevisiae, inorganic Se, and allowing the yeast to synthesize some amounts of SeMet and non-specifically incorporate it into yeast proteins in the form of SeMet. It is known that the seleno-yeasts production technology is quite complex, and the efficiency of SeMet synthesis and its incorporation in the yeast depends on many factors (the fermentation conditions, yeast strain, the Se addition protocol, base medium, energy sources (molasses), pH, temperature, shaking speed, aeration, inoculum size, incubation time, and inorganic Se concentration, which is highly toxic).

The management of all these factors is difficult to standardize, and this explains the large variability in the efficiency of the process. This variability leads to large variations in the content of SeMet, the main driver of Se bio-efficacy in livestock animals (De Marco et al. 2021). The Se composition of 13 fresh commercial seleno-yeasts  samples from different batches (CNCM I-3060, CNCM I-3399, NCYC R397, NCYC R645 and NCYC R646) has recently been investigated using new state of the art analytical methods.

These seleno-yeasts  are authorized as feed supplements with a product specification requirement of a minimum of 97% of the total Se in the form of organic Se as well as a minimum of 63% of total Se as SeMet.


There is still high variability in selenomethionine content in Se-yeasts

The high variability in the proportion of SeMet in seleno-yeasts has been known for some time. Indeed, several peer reviewed studies, as well as authorization opinions, have reported different ranges of variability (from 50 to 75%; Surai et al. 2018).

This new evaluation of freshly sourced products confirms the above-mentioned variability of the SeMet proportion, although the total Se concentrations of the investigated seleno-yeasts  matched the labelled indications perfectly (Figure 1).

The percentage of SeMet has been found to vary from 19% to 72%, while seleno-yeasts specifications indicate a minimum of 63%. Among the 13 tested seleno-yeasts, 8 contained less than 63% of total Se in the form of SeMet and did not match the product specifications, and only 5 were above this minimum level of SeMet. Different factors mentioned above explain this variability.


Figure 1: Se speciation compared to the total Se (%) of various fresh commercial seleno-yeast (SY) products

Figure 1: Se speciation compared to the total Se (%) of various fresh commercial seleno-yeast (SY) products

The concentration of Selenomethionine (SeMet), Selenocysteine (SeCys), Elemental Se (Se0), Selenite (Se-IV)), Selenate (Se-VI)) and other Se species are expressed as the % of the total Se. The analysis was conducted using the HPLC-ICP MS technique for all the Se species and ICP AES for total Se. The dotted line represents the % SeMet thresholds in SY as reported in their product specification.

Is selenocysteine present in Se-yeasts?

Se is a non-essential element for yeasts, because, unlike other higher organisms, yeasts do not have any genes coding for selenoproteins, the biologically functional forms of Se which have the specificity of containing a selenocysteine (SeCys) amino acid. It has recently been found that part of the SeMet present in seleno-yeasts  could also be nonspecifically oriented toward the trans-sulfuration pathway, thus resulting in non-specific SeCys incorporation in yeast proteins.

However, such SeCys, if fed to animals, cannot be stored in the same way as SeMet or used directly during selenoprotein synthesis, because of the compulsory in situ selenoprotein synthesis mechanism. In fact, dietary SeCys has been shown to be similar to sodium selenite, in terms of animal bio-efficacy (De Marco et al. 2021). Furthermore, the proportion of SeCys has generally been reported to be between 10 and 22% in seleno-yeasts  products, although the latest performed measurements have shown the presence of only 1.2 to 6.6% of SeCys (Figure 1).


And there are many other organic Se species in commercial Se-yeasts 

The specifications of the seleno-yeasts currently on the market are 97-99% of organic Se, mainly SeMet (63%), and the remaining organic Se species, are normally categorized as variable amounts of SeCys, water-soluble selenometabolites and unknown Se species. Many of these other organic Se compounds have been reported and characterized, in different seleno-yeasts .

It is now thought that seleno-yeasts could account for more than 100 qualitatively characterized Se species. However, despite the availability of advanced analytical technologies, a mass balance of the identified Se organic species and the assumed total organic Se has not yet been achieved. Therefore, these other Se species need further quantification and characterization investigations.

Advanced analytical techniques have revealed higher levels of inorganic Se present in Se-Yeasts than originally thought

Quantification of classic inorganic Se species in Se-yeasts

It is generally accepted that seleno-yeasts  products only contain residual concentrations of inorganic Se as selenite (Se-IV) or selenate (Se-VI), which has been confirmed by the present study on 13 seleno-yeasts  samples (Figure 1). Up until now, only the total Se, SeMet and inorganic Se (Se-IV and Se-VI) proportions in seleno-yeasts were considered. However, these proportions of inorganic Se have recently been questioned, as a result of the availability of advanced new analytical methods.

Elemental Se, a newly detected inorganic Se species in Se-yeasts explains part of the “unknown Se species”

In seleno-yeasts, organic Se has always been considered the difference between total Se and inorganic Se, where inorganic Se, as previously mentioned, is limited to Se-IV and Se-VI.   However, as a result of the advancement of analytical methods, the detection and accurate quantification of elemental Se (Se0) in seleno-yeasts  has recently been reported.  This newly identified Seo  represents an additional inorganic form of Se. Vacchina et al. 2021, have recently developed an accurate method to quantify Seo  in SY. The authors found that the proportion of Seo present in 7 seleno-yeasts on average represented 10-15% of the total Se and could even represent as much as 40%.  Seo  has recently been measured in 13 SY samples, using the same method, and it has been shown that the proportion of Seo  varied between 3.6% and 51.8% (Table 1).


Table 1: The elemental Se (Se0) content of various fresh commercial Se-yeast (SY) products 

Considering the sum of the inorganic Se species (Se-IV, Se-VI and Se0), the proportion of the organic Se in all the products was far below the specification of 97%, (Figure 2). When you take into account the complex fermentation mixture used in the seleno-yeasts production process, and the fact that sodium selenite (the source of Se in seleno-yeasts production) can be reduced to Seo by various reducing agents, the precipitation of Se in the form of Seo is a reaction that is very likely to occur. Therefore, the Seo concentration can now be measured by using the newly advanced analytical techniques, and declared by seleno-yeasts  manufacturers in order to improve transparency regarding the Se forms contained in such products.

Furthermore, pure organic Se sources, including SeMet, Zn-SeMet and OH-SeMet, have been shown to have no detectable Seo. In fact, these pure forms only deliver Se as SeMet, which is an important step in building Se reserves in the body, and this, in turn, can help alleviate the impact of commercially relevant stress conditions, improve the adaptability of livestock animals, and help maintain their health, with contributes to their productivity and reproductive performance.


Figure 2:  The organic and inorganic Se content compared to the total Se (%) of various fresh commercial Se-yeast (SY) products 


The recent advances in analytical methodologies have led to an increasingly more accurate, reliable and comprehensive determination of the composition of seleno-yeasts. These analyses reveal the presence of inorganic Seo , which explains a large part of the previously unknown Se species.

These findings demonstrate that the seleno-yeast products used in animal nutrition contain far less than 97% of total Se as organic Se. Thus, the proportion of inorganic Se in seleno-yeast products should be revised and, consequently, a complete characterization of inorganic Se species should also be performed. According to these findings, the characterization of seleno-yeasts  as a full organic form of Se can now be questioned and, consequently, the end users and the industry will now have the opportunity to make a more thoughtful choice when it comes to deciding how much to invest in an organic Se form.


Mohammed Amine HACHEMI, DMV
R&D Project Manager in Animal Nutrition at Adisseo

Mickaël BRIENS, PhD
R&D Manager Antioxidant Solutions at Adisseo

Michele DE MARCO, PhD
Global Category Manager Antioxidants Solutions at Adisseo


  • Surai, F. Peter; I. Kochish, Ivan; I. Fisinin, Vladimir; A.Velichko, Oksana (2018) Selenium in Poultry Nutrition. From Sodium Selenite to Organic Selenium Sources. In : The Journal of Poultry Science, advpub. DOI: 10.2141/jpsa.0170132.
  • Fagan, Sheena; Owens, Rebecca; Ward, Patrick; Connolly, Cathal; Doyle, Sean; Murphy, Richard (2015) Biochemical Comparison of Commercial Selenium Yeast Preparations. In : Biological trace element research, Ahead. DOI: 10.1007/s12011-015-0242-6.
  • De Marco, Michele; Conjat, Anne-Sophie; Briens, Mickaël; Hachemi, Mohammed Amine; Geraert, Pierre-André (2021) Bio-efficacy of organic selenium compounds in broiler chickens. In : Italian Journal of Animal Science, vol. 20, n° 1, p. 514–525. DOI: 10.1080/1828051X.2021.1894994.
  • Vacchina, Véronique; Foix, Dominique; Menta, Mathieu; Martinez, Hervé; Séby, Fabienne (2021) Optimization of elemental selenium (Se(0)) determination in yeasts by anion-exchange HPLC-ICP-MS (7).


Access the scientific paper


Watch the video to know more:



Access to Selisseo® product page