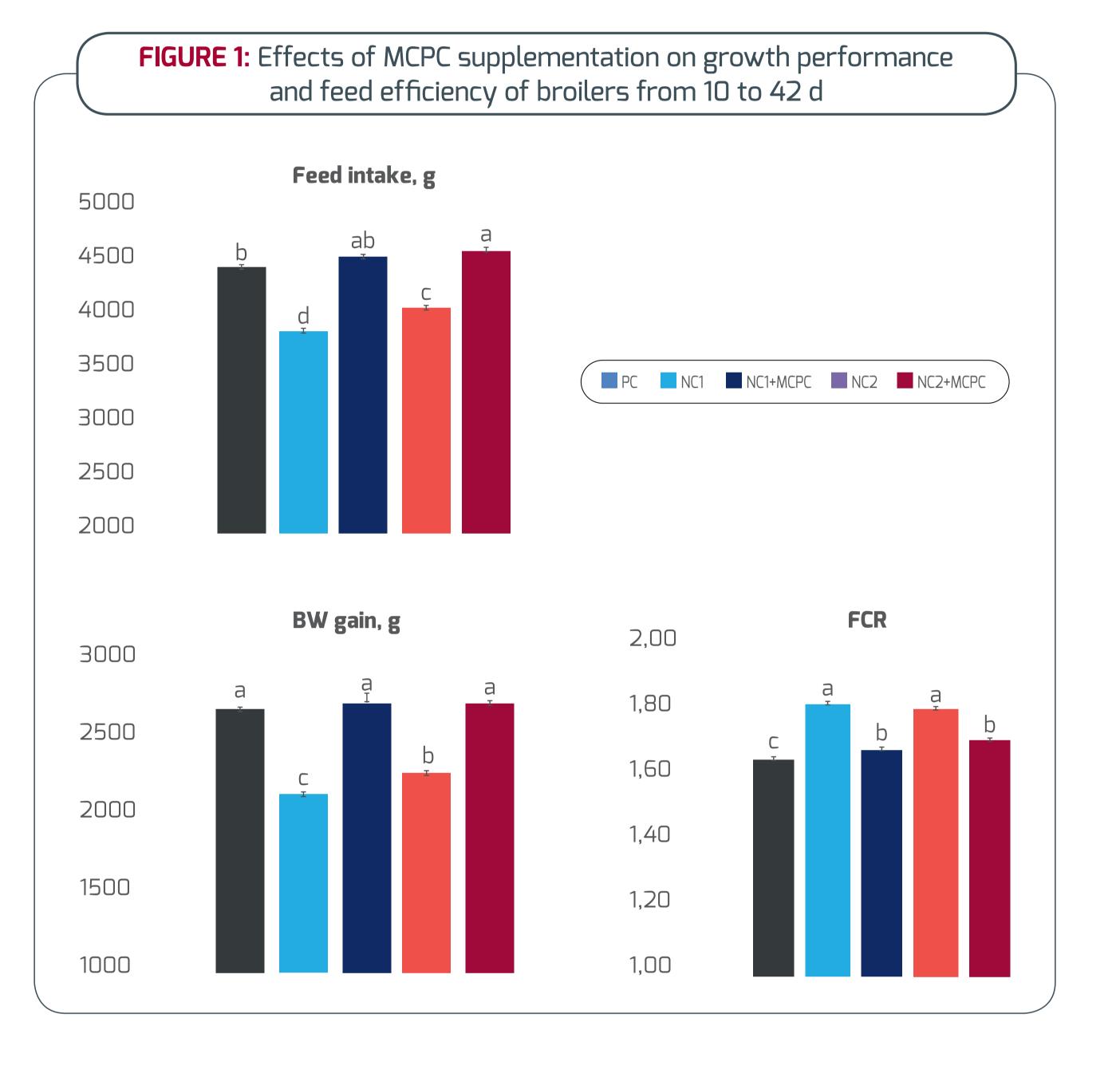


EVALUATION OF A GLOBAL ENZYME SOLUTION ON GROWTH PERFORMANCE AND CARCASS CHARACTERISTICS OF BROILERS FED CORN-WHEAT-SOYBEAN **BASED DIETS REDUCED IN METABOLIZABLE ENERGY AND NUTRIENTS**

JLALI MAAMER^{1*}, BELLO ABIODUN¹, COZANNET PIERRE¹, JOHLKE KRISS², MOORE DAN² AND PREYNAT **AURÉLIE¹**

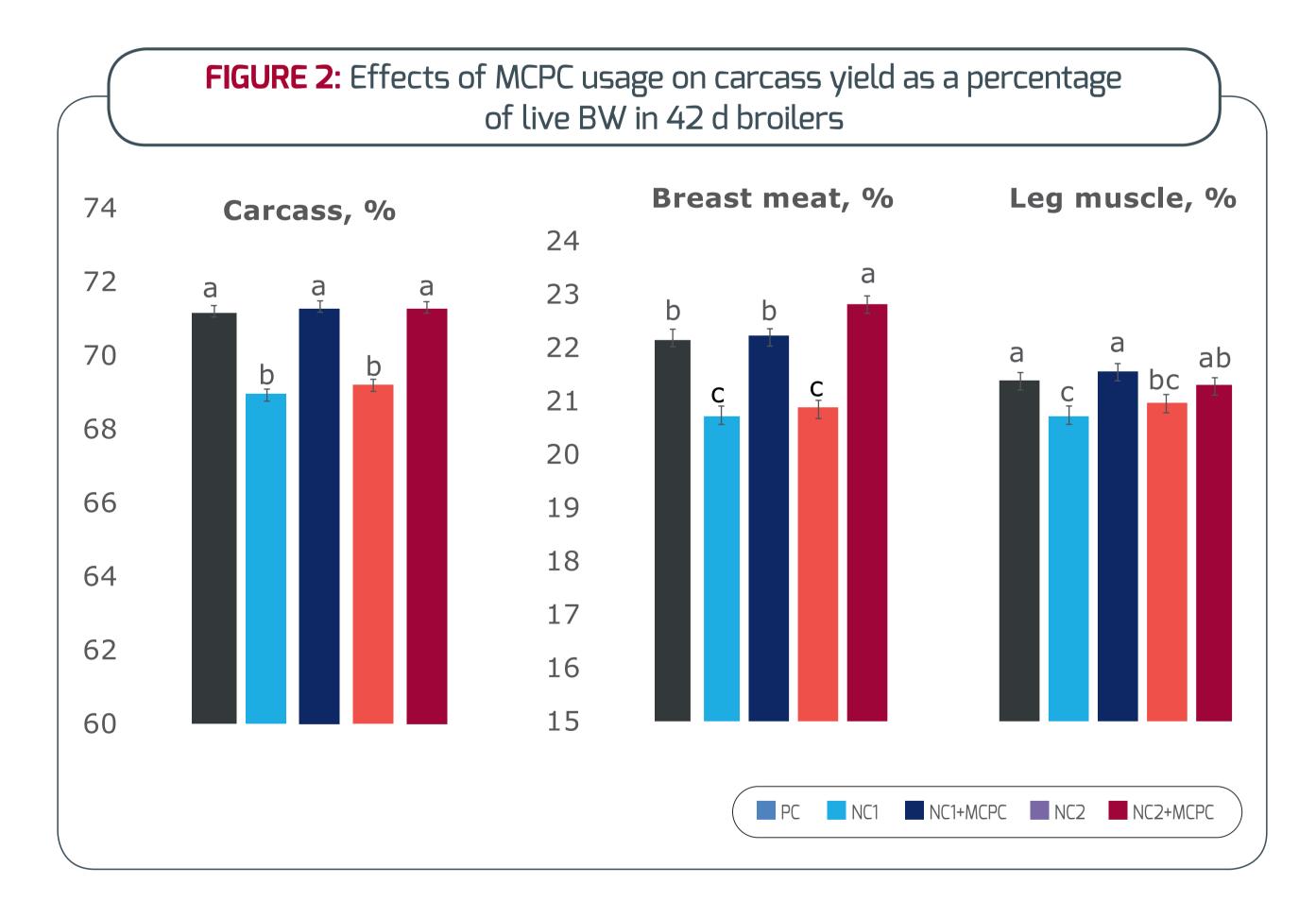
¹ADISSEO FRANCE S.A.S, 03600 MALICORNE, FRANCE AND ²COLORADO QUALITY RESEARCH, INC, 80549 COLORADO, USA ¹*CORRESPONDING AUTHOR: MAAMER.JLALI@ADISSEO.COM

Introduction


Commercial broiler diets constitute of over 99% of ingredient sources of metabolizable energy (ME), digestible amino acids, phosphorus (P), and calcium (Ca; Corzo et al 2011). Ability to significantly reduce the dietary levels of ME, dAA, available P (avP), and Ca without detrimental effects on growth performance and yield of broilers through market age would imply increase in nutrient efficiency. Efficiencies of carbohydrases to hydrolyse non-starch polysaccharides and increase ME and AA digestibility (Cozannet et al., 2017) and phytase to dephosphorylate phytate and increase P and Ca availability (Amerah et al., 2014) have been validated. Hence, a global enzyme solution, which consists of a multi-carbohydrase and phytase complex (MCPC) is proposed to be able to allow significant reductions in dietary energy and nutrients.

Objective

To evaluate effects of global enzyme solution in commercial broiler diets reduced in ME, dAA, avP, and Ca on performance and carcass yield of broilers through market age.


Materials & Methods

- 1,020 day-old male Cobb 500 chicks were randomly assigned to 60 floor pens (5 diets × 12 replicates) with 17 birds/pen.
- Birds were fed a common starter diet from 1 to 10 d and one of 5 experimental diets from 11 to 42 d. Dietary treatments were ME- and nutrient-adequate positive control (PC) or either of 2 negative control (NC) diets with fixed reductions in avP and Ca by 0.18% and 0.16% units, respectively, and sequential reductions in each of ME and dAA by 5% (NC1) or 7% (NC2) vs the PC diet without or with MCPC (at 1,250 xylanase U, 860 betaglucase U, 4,600 arabinofuranosidase U, and 1,000 FTU per kg of diet).
- Performance traits: BW and feed in and out were measured at each phases for d 11 to 42 mortality-corrected BW gain, feed intake, and feed conversion ratio calculations. At 42 days of age, 8 birds per pen (n = 480) were used for carcass yield measurements.
- Statistical analyses handled with Proc. Mixed of SAS 9.4. Effects considered significant at P≤0.05.

TABLE 1: Ingredients % and nutrient composition, % as-feed

	Starter (d1-10)	Grower (10-28)			Grower (28-42)		
		PC	NC1	NC2	PC	NC1	NC2
Composition, %							
Corn	39.47	39.28	39.72	39.38	50.21	50.05	49.50
Soybean meal	34.89	35.44	32.64	31.51	21.11	19.41	18.58
Wheat	15.00	15.00	15.00	15.00	15.00	15.00	15.00
Soy hulls	2.00	2.00	5.50	6.60	4.75	8.73	9.58
Rice bran	1.00	1.00	2.20	3.00	2.00	2.05	3.10
Soy oil	3.34	3.97	2.53	2.08	4.00	2.74	2.22
Monocalcium phosphate	1.45	0.97	0.12	0.13	0.84	-	-
Calcium carbonate	1.60	1.38	1.32	1.33	1.11	1.05	1.05
DL-Methionine 99	0.44	0.31	0.30	0.29	0.22	0.21	0.21
L-Lysine HCl 98	0.16	0.06	0.07	0.08	0.15	0.16	0.16
L-Threonine	0.12	0.06	0.06	0.06	0.07	0.07	0.07
Vitamin and mineral premix	0.20	0.20	0.20	0.20	0.20	0.20	0.20
Salt	0.30	0.30	0.30	0.30	0.30	0.30	0.30
Salinomycin (CQR)	0.04	0.04	0.04	0.04	0.04	0.04	0.04
Nutrients, %							
ME, kcal/kg	3050	3100	2945	2883	3150	2993	2930
Dig. Lys	1.18	1.11	1.06	1.03	0.83	0.79	0.77
Dig. Met	0.72	0.59	0.56	0.55	0.43	0.41	0.4
Dig. M+C	0.98	0.86	0.82	0.8	0.64	0.61	0.6
Dig. Thr	0.77	0.72	0.68	0.67	0.54	0.51	0.5
Dig. Trp	0.23	0.23	0.22	0.21	0.16	0.15	0.15
Dig. Val	0.89	0.9	0.86	0.84	0.67	0.64	0.63
Calcium	0.9	0.75	0.59	0.59	0.6	0.44	0.44
Total Phosphorus	0.69	0.59	0.42	0.42	0.52	0.34	0.35
Available Phosphorus	0.45	0.35	0.17	0.17	0.3	0.12	0.12
Sodium (g/kg)	1.43	1.43	1.43	1.43	1.4	1.39	1.4
Complet diet price, euro/ton		268.2	250.6	243.8	240.3	225.8	220.0

DISSEO

Bluestar Company

Results

The NC1 and NC2 (reduced in ME, dAA, avP, and Ca relative to PC) respectively worsened (P<0.001) BW gain by 21.1 and 15.8%, FCR by 10 and 9.2%, to also decrease carcass by 22.2 and 16.9%, breast meat by 24.8 and 18.8%, and leg by 22 and 15.9% yields. The use of MCPC in each of NC1 or NC2 restored the performance, carcass, breast and leg yields to the same levels as the broilers fed PC diet.

CONCLUSION: THIS FINDINGS IMPLY THAT ABILITY OF THE GLOBAL ENZYME SOLUTION (MCPC) TO ALLEVIATE ADVERSE EFFECTS OF 7% ME, 7% DAA, 0.18% UNIT AVP, AND 0.16% UNIT CA DEFICIENCIES ON BROILERS PERFORMANCE AND CARCASS YIELD ALLOWS FOR SIGNIFICANT REDUCTION IN DIETARY NUTRIENT VALUE WITH INCREASE IN OVERALL FEED EFFICIENCY TO DECREASE FEED COST.

References

Corzo et al., 2011. J. Appl. Poult. Res. 20:284–290 Cozannet et al., 2017. Poult. Sci. 96:2743–2750 Amerah et al., 2014. Poult. Sci. 93:906–915

XVth EUROPEAN POULTRY CONFERENCE: DUBROVNIK 17th - 21st September 2018