What is the CNCPS? The model and the cow

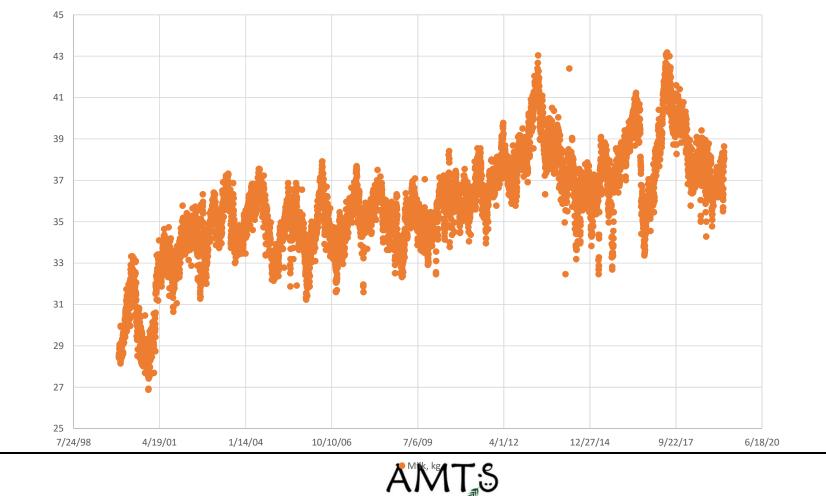
Dr. Thomas P Tylutki Dpl ACAN President AMTS

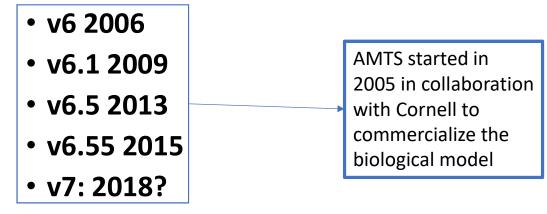
AMT_sS

First: Some questions

• Which feed is better at making milk?

- Maize silage or wheat straw?
- Whole maize grain or fine-ground barley?
- Rapeseed or rumen protected rapeseed?
- Which feed is less expensive?
 - Per ton? Per kg of potential milk?
- How do we know these answers?
 - Feeding trials, experience, company literature, guessing....
- Need to use a feeding system (mathematical model) to predict future performance on hypothetical diets.

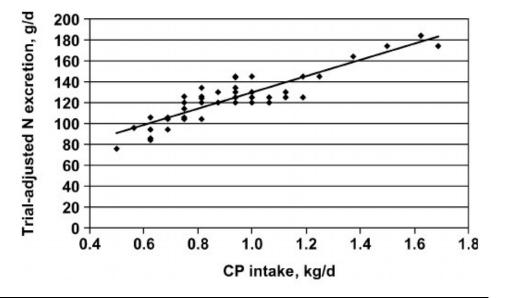




8

CNCPS Releases through the years

- CNCPS v1: 1991
- v2 1993
- v3 1994
- v4 2000
- v5 2003

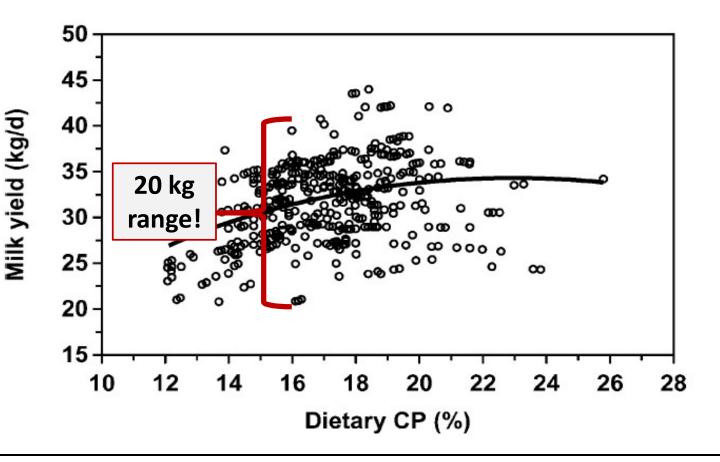

- CPM was a commercial application only for dairy cattle
 - CPM as a spreadsheet for several years
 - CPM v1 1994ish
 - CPM v2 never released
 - CPM v3 2006
 - 2009: CPM officially disbanded

How?

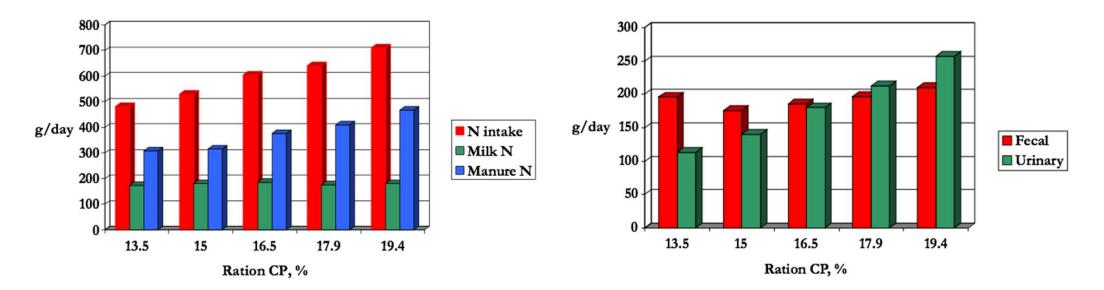
- Communication is key
- The Model is critical
 - used not only for formulation but also for doing 'what-if' scenarios
- A commitment to continuously improve
 - recognition that a change today may take 3-12 months to fully see the impact
 - recognition that marginal income, and income over feed costs, is critical versus 'least cost'
 - recognition that you can not short-change good nutrition

What is a mathematical nutrition model?

- Description of a complex biologic system (the cow) using mathematical terms and principals.
- Usually used to predict an outcome
- Example:
 - Empirical approach (regression)
 - Equation of line:
 - N excretion = (CP x 78.39) + 51.4
 - SE: 10.8 g/d = approx. 8% error.
 - This is a very simple model for N excretion
- Can we use CP to predict milk yield?



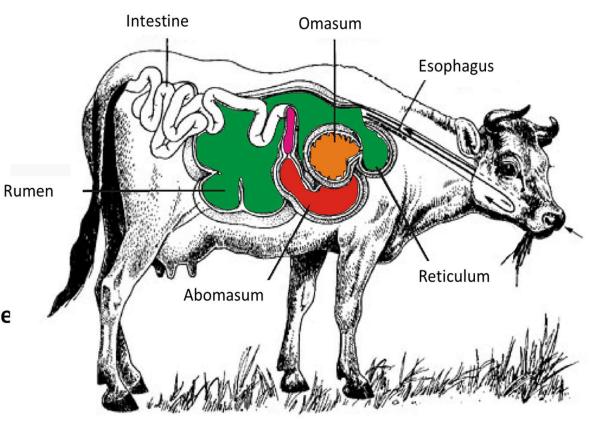
 $\mathbf{Y} = \mathbf{a}\mathbf{X}_1 + \mathbf{b}\mathbf{X}_2 + \mathbf{c} + \mathbf{\varepsilon}$


AMT

Dietary CP % vs. milk yield

- Line is curvilinear
- There is a lot of spread around the line.
- Maybe something else is driving milk yield.
- How do we account for multiple drivers?

Introduction --- Requirements ---- Supply --- Cow vs. Model N Intake and Excretion from Rations Varying in CP Levels



13

AMT_sS

Back to Basics: The ruminant animal

- Dynamic digestion process
 - Heterogenous diets
 - Fermentation chamber
 - Selective retention of particles
- Bacterial fermentation
 - Growth and outflow
 - Nitrogen cycling
 - 40-60% of AA from microbes
- Multiple physiologic needs
 - Maintenance, growth, lactation, pregnancy, reserves gain/loss happe at same time
- Need an accounting system!

AMT_"S

Cornell Net Carbohydrate and Protein System

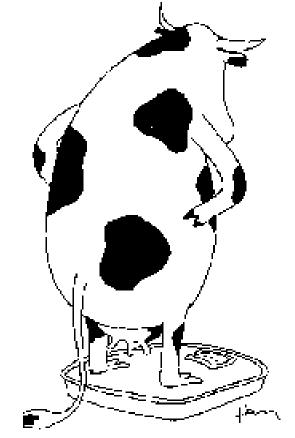
- A mathematical model accounting for supply and requirements
- Focused around energy, protein and amino acid balance

Requirements

- Generally use empirical equations
- Maintenance, pregnancy Lactation, growth, reserves
- Animal characteristics are most important
- Adjustments made for environment and activity

<u>Supply</u>

- Mechanistic equations
- Rumen sub-model (microbes) and intestinal digestibility drive supply
- Feed characteristics are most important
- Diet associated effects are taken into account



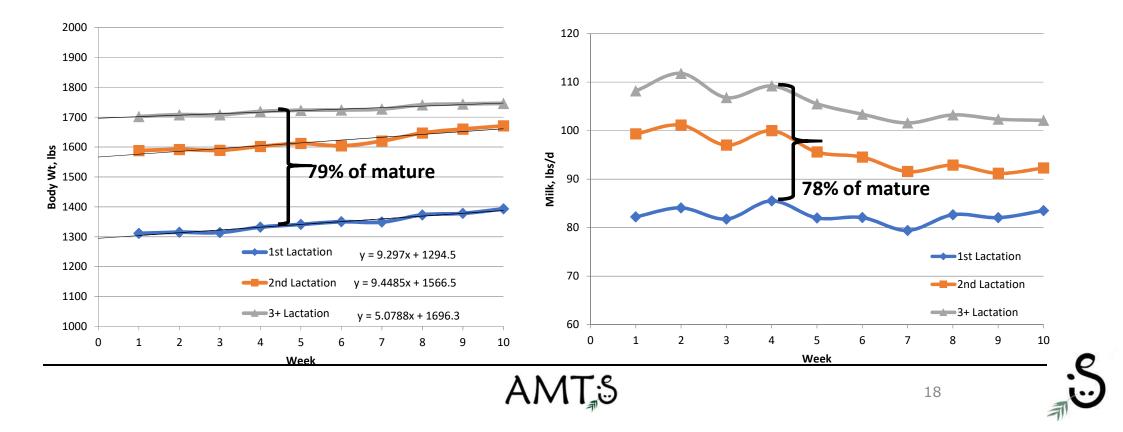
AMTS

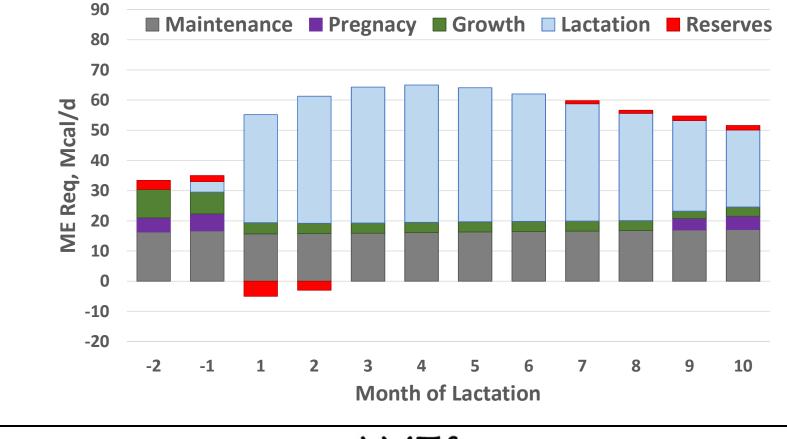
AMT_S

Single most important animal input?

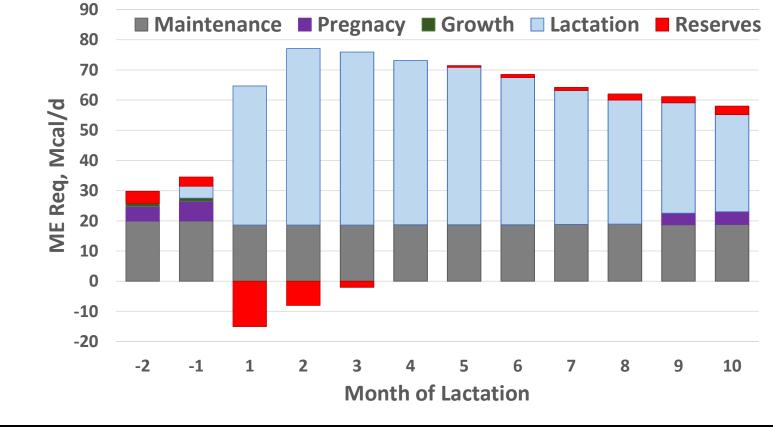
- BODY WEIGHT. Used to predict:
 - Predicted feed intake
 - Maintenance energy requirements
 - basal
 - adjustments for activity
 - Protein maintenance requirements
 - scurf
 - urinary
 - Passage rates
 - Growth requirements
 - Pregnancy requirements
 - Reserve requirements

Cows are (still) getting bigger


- Cornell Research Farm
 - 1993 mature body weight = 668 ± 67 kg
 - 2016 mature body weight = 776 ± 74 kg
- That is an approximately 1% per year increase



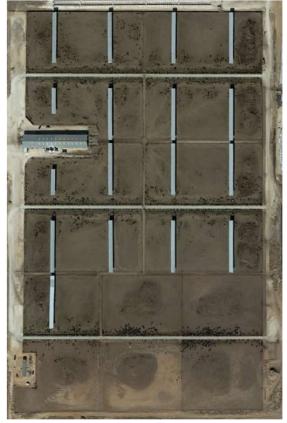
Direct relationship between calving weight and milk production



Requirements for Energy –1st Lactation

AMTs

Requirements for Energy – Mature Cows


AMT S

Distances?

Note: all of these pictures and distances in these few slides are from Google Earth and using their path function to determine distance.

AMT_sS

4200 cow dairy

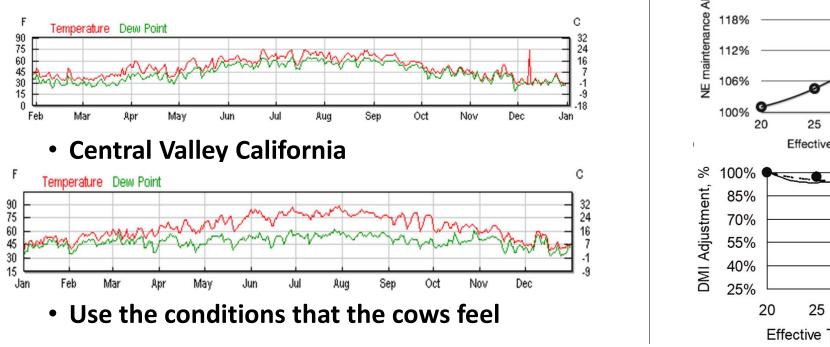
Late lactation cows

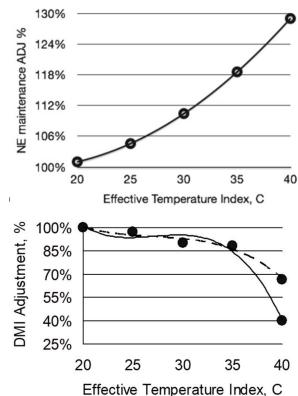
- Parlor to center of lot is
 - 500 m
 - Milking 2x per day is
 - 4 x 500
 - 2,000 m walking to/from parlor

AMT_sS

750 cow dairy

- Parlor to center of farthest pen is:
 - 100 m
 - 3x milking so
 - 100 x 6 =
 - 600 m walking per day to/from parlor


Why is this important?

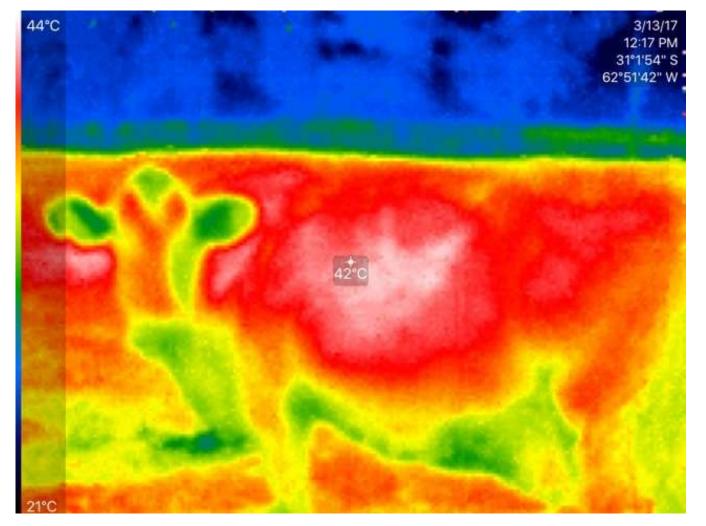

- Aussie researchers put cows on treadmills
 - For every 1 km flat distance walked, energy requirements increase the equivalent of about 500 ml milk
 - Or 1 mile = about 1.54 lbs of milk
 - Sloped walking (>3% slope) about 5x greater!
- Now, we can also use this to our advantage
 - Fresh and high cows as close to milking center as possible
 - Late lactation cows furthest to help us control BCS
 - Fat cows even further

Environment Adjustments

- Temperature and Humidity
 - Bremen, Germany

Heat Stress

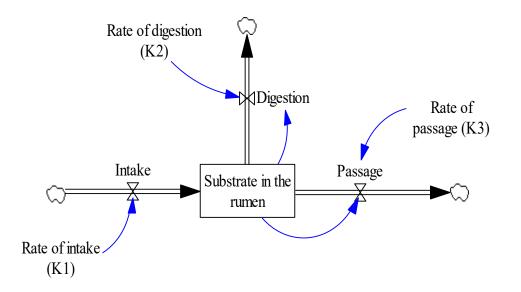
AMTs


Maintenance Adjustments

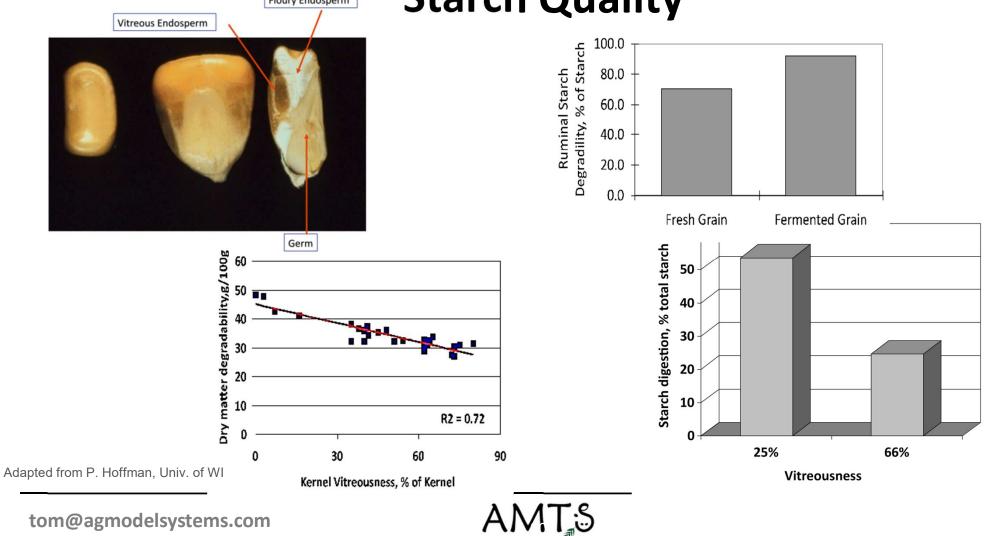
	Deg C	0°C		-10°C		-20°C	
	Coat Condition	Clean	Heavily Covered	Clean	Heavily Covered	Clean	Heavily Covered
Dry cow	0 Wind	100%	100%	100%	104%	101%	137%
	20 kph Wind	100%	100%	100%	120%	121%	155%
100 kg Heifer	0 Wind	162%	262%	197%	326%	236%	390%
	20 kph Wind	236%	295%	292%	367%	349%	438%

2/26/2018

tom@agmodelsystems.com

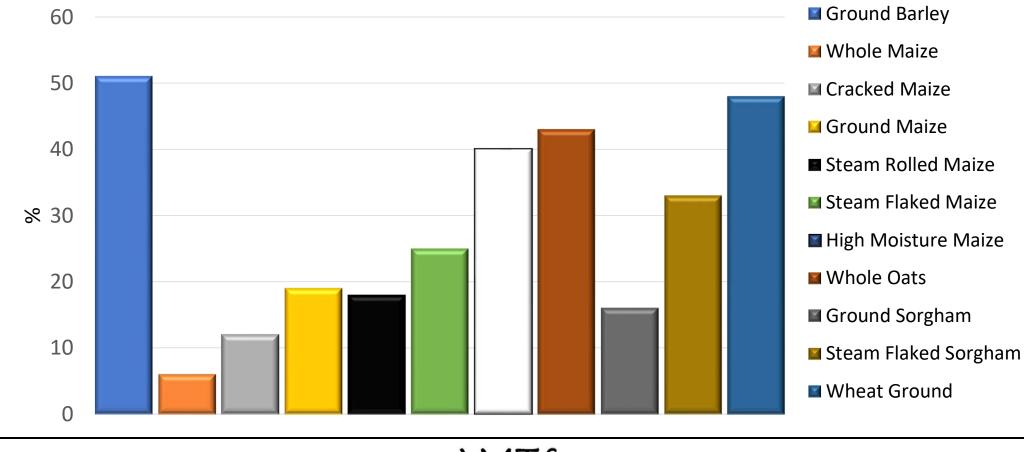

AMT_#S

Cattle inputs – Key numbers in the CNCPS


- Lactating cows
 - Body weight is very important!
 - 21 days in milk: Intake equation picks up
 - 191 days pregnant: Fetal requirements begin
 - Average daily gain always frame growth, not reserves gain.
 - Mature cows (3+ lactation) should not have an ADG.
 - Reserves change should be reflected in BCS change
- Dry Cows
 - 260 days pregnant: Fetal and mammogenesis requirements really take off.
 - MP requirements are quite high in the last month of dry period
 - Dry cows can be very heavy
 - Conceptus will be almost 2 x the weight of the new calf.

Rumen Submodel

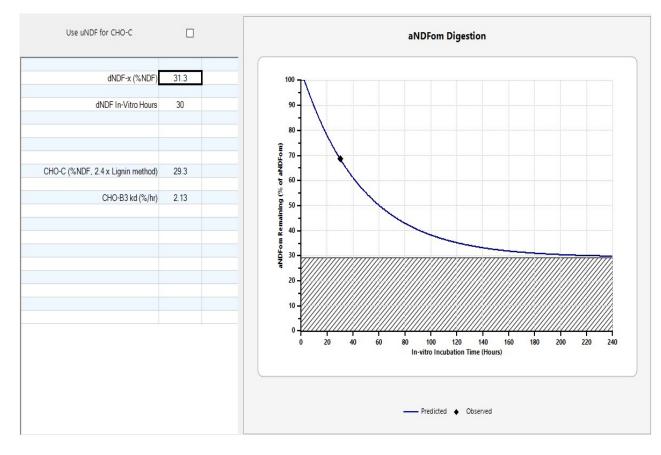
- Digestibility = kd/(kd+kp)
 - Rate of degradation (kd):
 - specific to the feed fraction
 - Rate of passage (kp):
 - specific to the animal
- Equation used to calculate disappearance of given substrate
 - Microbial growth rate is calculated from CHO kd
- Metabolizable Energy (ME):
 - Calculated from digested nutrients
- Metabolizable Protein (MP):
 - Microbial protein & Undegr. Protein



Introduction --- Requirements ---- Supply --- Cow vs. Model Floury Endosperm Starch Quality

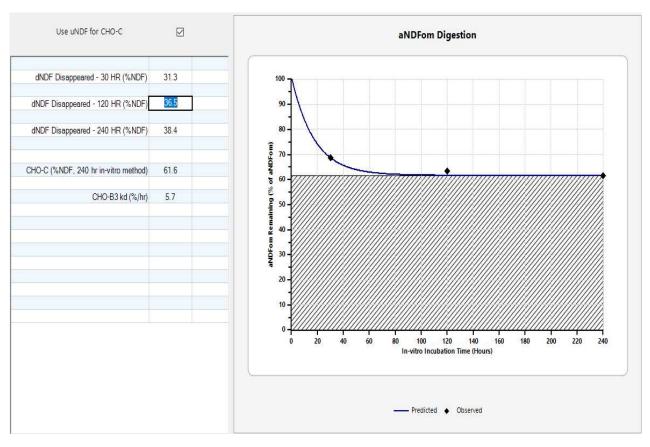
30

Rumen Degraded Starch, % DM



So let's look at a few examples

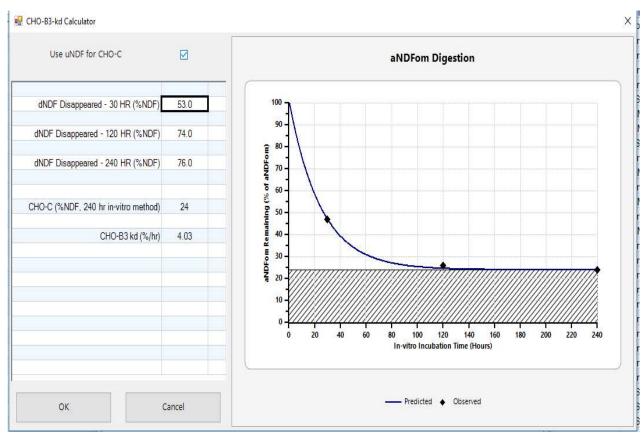
Pool	kd	kp	% Degraded in rumen	
Sugar	40%	12%	76.9%	
Good maize starch	15%	6%	71.4%	
Poor maize starch	7%	6%	53.8%	
СНО ВЗ	4%	2%	66.7%	
СНО С	0%	2%	0%	


NDF digestibility: most models

- Whole-crop silage from UK
- Traditional single time point:
- Used 30 h NDFd:
 - 31.3 % of NDF
- Lignin 2.4 as estimation of iNDF:
 - 29.3 % of NDF
- Kd: 2.13 %/h

NDF digestibility: new CNCPS method

- Same UK forage
- 3 time point
 - 30h: 31.3 %
 - 120h: 36.5 %
 - 240h: 38.4 %
- Measured uNDF
 - 61.6 % of NDF
- Kd: 5.7 %/h

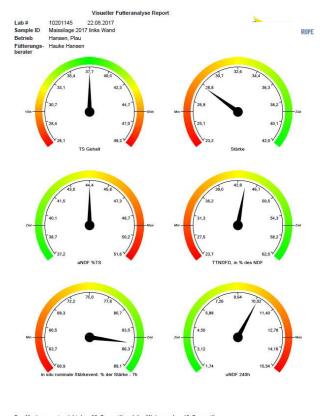


AMT

AMTS

NDF digestibility in the CNCPS

- In vitro digestibility
 - 30, 120, and 240 h of incubation in rumen fluid
- Allows us to 'see' degradation characteristics
- NIR estimations for these numbers are quite good
- Available <u>only</u> through USlinked laboratories and EuroFinn at this point



CNCPS Feed Fractions

	Protein Frac	ctions	Carbohydrate Fractions			
Label	Lab Measure	Relative kd	Label	Lab Measure	Relative kd	
PRT A1	Ammonia	Fast	CHO A1-A3	VFA	Moderate	
PRT A2	Sol. True Prot.	Med-Fast	CHO A4	Sugars	Fast	
PRT B1	By difference	Moderate	CHO B1	Starch	Med-Fast	
PRT B2	NDIP-ADIP	Slow	CHO B2	Sol. Fiber	Moderate	
PRT C	ADIP	Undegradable	СНО ВЗ	Digestible NDF	Slow	
			СНО С	uNDF	undegradable	

Feed analysis: Do we really need all this info?

DAIRYLAND Laboratories, Inc.		Fax:	612 608-323-2123 608-323-2184 info@dairylandlabs.com	Report Date: Sample No.:	3/28/2017 001-1703-675360
To: Agrofeed Kft-NIR			Account No.:	7707 (0)	
Vadas 7			Sampled By:	Agrofeed Kft-N	IR Spe
6086, Hungary,			Sampled For:	SZIRMA-TERM	
					a KE I
Product: silo kukor Description2: Kosa Leve			Test Mode: Feed Type:	N3 Corn Silage	
		Dry Basi	s Average	,	formal Range
Summary					
Moisture		63.7			
Dry Matter		36.2			
pH		3.7	0		
Results					
Crude Protein	%DM	8.1	5 7.82	5.	72 - 9.92
AD-ICP	%DM	0.2			35 - 1.03
ND-ICP w/SS	%DM	0.7			55 - 1.97
Protein Sol.	%CP	69.8		16.	
Ammonia-CP	%CP	12.0			23 - 10.90
Ammonia-CP	%DM	0.9			13 - 0.94
ADF	%DM	22.0		17.	
aNDFom	%DM %DM	35.6		30.	
Lignin (Sulfuric Acid)	%DM	2.6			23 - 5.11
Lignin (Sultanc Acia)	%NDFom	7.4			30 - 10.72
Lignin input (uNDF/2.4)	%DM	4.0			55 - 6.30
NDFD 30	%NDFom	61.5		43.	57 - 64.17
NDFD 120	%NDFom	68.7		62.	
NDFD240	%NDFom	72.0		65.	
uNDFom30	%DM	13.4		13.	
uNDFom120	%DM	10.8			02 - 15.78
uNDFom240	%DM	9.7			00 - 14.90
Starch IVSD7-o	%DM %Starch	38.4		18.	
Fat (EE)	%Starch	4.3			15 - 4.19
TFA (fat)	%DM	2.9			18 - 3.26
Ash	%DM	4.5			42 - 6.18
Calcium	%DM	0.1			12 - 0.36
Phosphorus	%DM	0.2			18 - 0.30
Magnesium	%DM	0.1			12 - 0.28
Potassium	%DM	1.0			63 - 1.47
Sulfur	%DM	0.1			09 - 0.13
Sugar (ESC)	%DM	0.3			02 - 4.67
Sugar (WSC)	%DM %DM	0.3			18 - 6.51 01 - 5.98
Lactic Acid Acetic Acid	%DM	4.1		0.	
Propionic Acid	%DM	0.6			01 - 0.49
Silage Acids	%DM	8.0			01 - 7.87
Lactic:Acetic ratio		1:		0.	
					Page REFERENCE: 16145 03/28/201

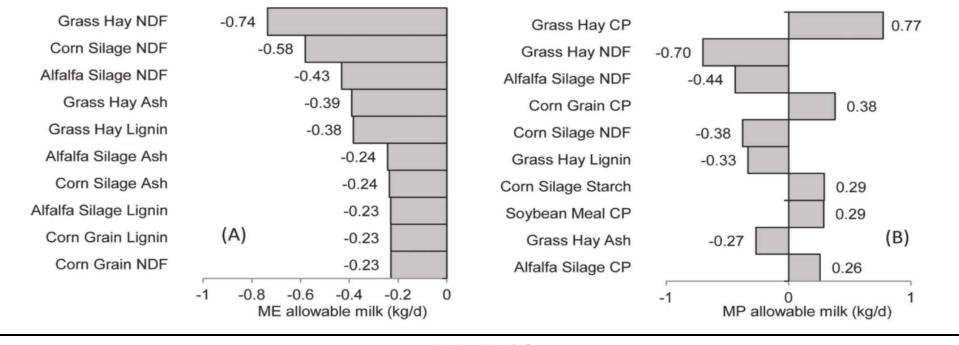
Das Maximum entspricht dem 85. Perzentil und das Minimum dem 15. Perzentil. Das Ziel kann je nach Anforderung das Minimum oder Maximum sein oder auch mittig liegen (grün). För se vir us deprichte Dientspressen und verst versten Geschäherstragen i Beartform des und versionschnettig B

tom@agmodelsystems.com

AMT

Dry Matter

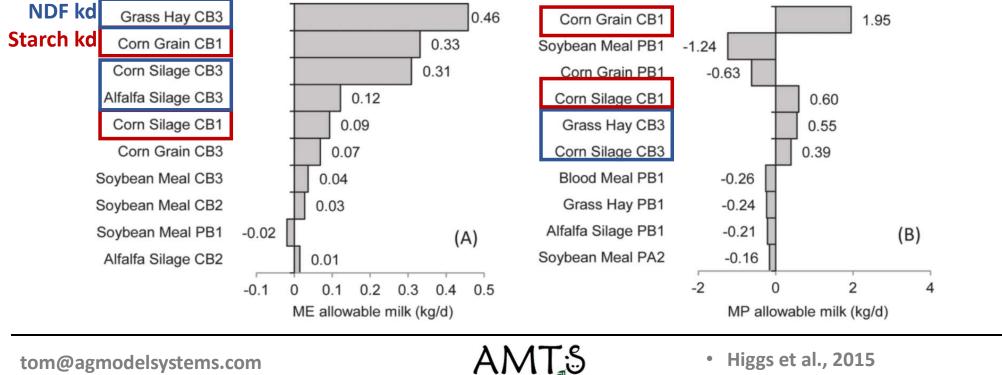
Sensitivity analysis utilizing Monte Carlo sampling techniques proved that moisture content of silages is directly related to income over feed costs (IOFC)


assume fed for 365 days		
Sample every	4	3
N required	77	101
Coefficent of Variation	12.9%	12.8%
Standard Deviation	4.5	5.1
Mean	34.6	40.0
Maize Silage 7	27.8	50.2
Maize Silage 6	29.9	39.5
Maize Silage 5	39.7	37.3
Mazie Silage 4	38.9	39.9
Maize Silage 3	35.6	38.3
Maize Silage 2	33.5	41.3
Maize Silage 1	36.9	33.5
Sample description	Dry matter	NDF

AMTS

Feed analysis: Composition

- Which measurements of <u>composition</u> are most important?
- Evaluated ME and MP sensitivity to 1 SD increase in amount of nutrient



tom@agmodelsystems.com

AMT_sS

Feed analysis: Digestibility

- Which measurements of <u>digestibility</u> are most important?
- Evaluated ME and MP sensitivity to 1 SD increase in digestion of nutrient

tom@agmodelsystems.com

Higgs et al., 2015

Feed analysis: Ranking of what is important

Corn Silage	Наусгор
aNDFom	aNDFom
Starch	aNDFom dig (3 time point)
aNDFom dig. (3 time point)	СР
Starch dig. (7h 4mm, or lab kd)	Ammonia CPE
СР	Sol. Protein
TFA (or EE)	NDICP
Ash	ADICP
VFA	ESC (or WSC)
ESC (or WSC)	Ash
ADICP	TFA (or EE)
NDICP	VFA
Sol. Protein	

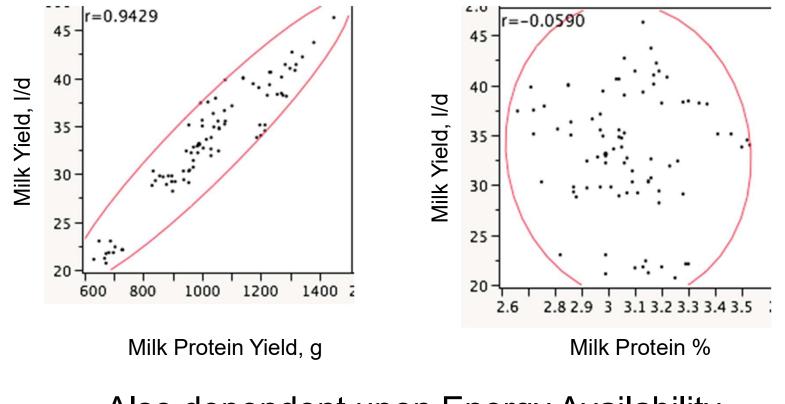
Feed analysis: Which ones to use?

Moisture		63.79%
Dry Matter		36.21%
pH		3.75
Results		
Crude Protein	%DM	8.15
AD-ICP	%DM	0.26
ND-ICP w/SS	%DM	0.76
Protein Sol.	%CP	69.82
Ammonia-CP	%CP	12.02
Ammonia-CP	%DM	0.98
ADF	%DM	22.04
aNDF	%DM	35.69
aNDFom	%DM	34.83
Lignin (Sulfuric Acid)	%DM	2.60
Lignin	%NDFom	7.46
Lignin input (uNDF/2.4)	%DM	4.06
NDFD 30	%NDFom	61.50
NDFD 120	%NDFom	68.73
NDFD240	%NDFom	72.04
uNDFom30	%DM	13.41
uNDFom120	%DM	10.89
uNDFom240	%DM	9.74
Starah		20 11

Starch	%DM	38.41
IVSD7-o	%Starch	84.84
Fat (EE)	%DM	4.38
TFA (fat)	%DM	2.99
Ash	%DM	4.51
Calcium	%DM	0.18
Phosphorus	%DM	0.24
Magnesium	%DM	0.14
Potassium	%DM	1.05
Sulfur	%DM	0.11
Sugar (ESC)	%DM	0.31
Sugar (WSC)	%DM	0.30
Lactic Acid	%DM	4.16
Acetic Acid	%DM	3.30
Propionic Acid	%DM	0.61
Silage Acids	%DM	8.07
Lactic:Acetic ratio		1:1

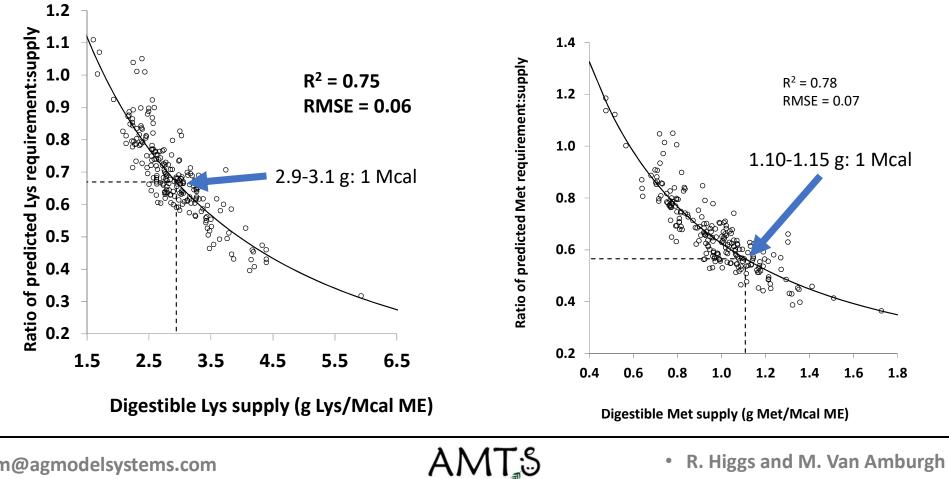
	Ration Ration S	Shots (Empty) Opt. Fe	eed Constr	raints Optimiz	zer Adv.	Optimizer Ba	tch Report	Feeding Sheet Report	ts Notes Repo	orts 2 P	al. Opt.					
LOI f Bi	Recipe	High diet active					v	Ration C	Outputs AA Su	pp. Tool	CNCPS Min/Vit	Additives Amino Acid	Is Met E & P P & E	PRT Pools	CHO Pools	CHO Fe
Pe	riecipe	ingh der derve								Safe Min	Min	Snap. Value		Value		
Ce	Cattle	ttle Lact Cow Barns.Pen 5 Old cows 🗸				Dry Matter Intake (kg	g/day)		29.48	29.48	27.21		27.21			
es					- IOFC			0.00	0.00	7.24		7.20				
tC		Feed	രി	kg/day (DM)	രി	kg/day (AF)	%DM	Cost/hd	[?	0.00	0.00	6.34		6.55	
Pe								Forage (%DM)	[?	53.00	53.00	52.92		52.92	
Pe	Corn silage 201		8.12	8.12	28.31	28.31	29.856	Forage NDF (%BW)	[?	0.00	0.98	0.79		0.79	
Pe	Alfalfa silage 20		3.78	3.78	12.40	12.40	13.900	DM (%)			20.00	20.00	41.29		41.23	
Pe	Cow Grass 2nd	2017	2.49	2.49	9.07	9.07	9.167	ME Allowable Milk (kg	j/day)		48.93	48.93	48.28		48.78	
Pe	HMEC 2016		4.043	4.043	6.307	6.307	14.858	MP Allowable Milk (kg	(day)		48.93	48.93	48.20		49.81	
ne l	chocolate		1.793	1.793	2.068	2.068	6.591	ME (%Rqd)	[?	100.00	103.00	100.43		101.20	
De	Corn meal		1.192	0.000	1.354	0.000	0.000	MP (%Rgd)	Î	?	100.00	100.00	100.29		102.68	
pe	EZ Protein June	19 2017	5.7819	5.7819	6.3852	6.3852	21.248	MP Supply (g)	í	?	500.00	500.00	3,147.69	3	,211.64	
Pla	flakes n steep		N/A	1.1920	N/A	1.4569	4.381	Rumen NH3 (%Rgd)		1	120.00	130.00	159.82		152.56	
Pe		Click to add						NFC (%DM)	í	?	0.00	0.00	40.93		40.86	
52	Total		27.2109	27.2109	65.8943	65.9960	100.000	peNDF (%DM)	í	?	18.50	18.50	19.76		19.90	
5 5								Lactic (%DM)	í	?	0.00	0.00	2.97		3.02	
	Predicted DMI (CNCPS)	27.371	27.3711				Sugar (%DM)	i i	2	0.00	0.00	3.97		4.00	
nn	Inputted/Predic	ted DMI (%)	99.415	99.415				Starch (%DM)	ŕ	2	0.00	22.00	28.19		28.04	
ind	Predicted DMI (NRC)	30.122	30.122				Fermentable CHO (%	CHO)	?	0.00	40.00	60.89		62.12	
								Ferm. Starch (%DM)		?	21.50	21.50	20.80		21.56	
4	Deinking Mistor	tetales (AE)	100.4	100.4					L	<u> </u>		NATURA IN CONTRACTOR				

Amino Acid Composition, g/100 g


Amino Acid	Tissue	Milk	Microbes		
MET	1.82	2.71	2.68		
LYS	6.29	7.62	8.2		
HIS	2.45	2.74	2.69		
PHE	3.65	4.75	5.16		
TRP	1.18	1.51	1.63		
THR	3.83	3.72	5.59		
LEU	6.96	9.18	7.51		
ILE	2.94	5.79	5.88		
VAL	4.28	5.89	6.16		
ARG	6.65	3.4	6.96		

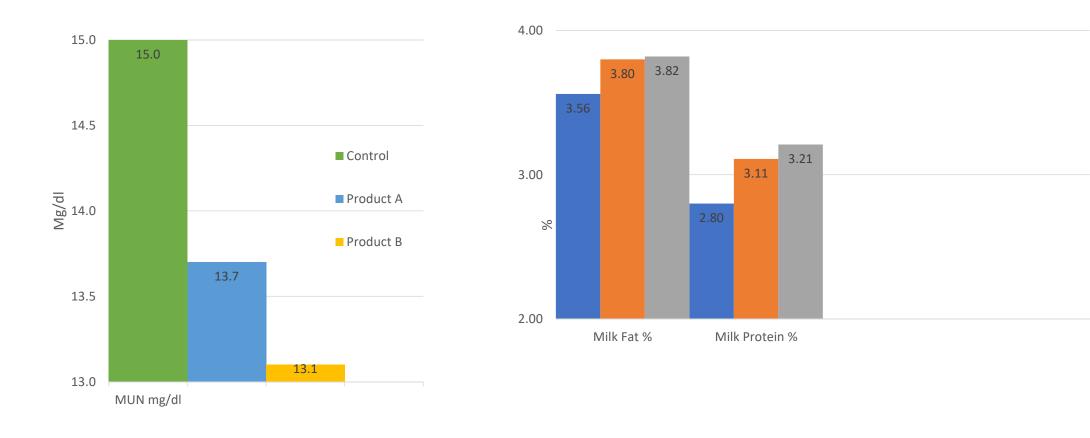
Milk Protein and Yield

Also dependent upon Energy Availability

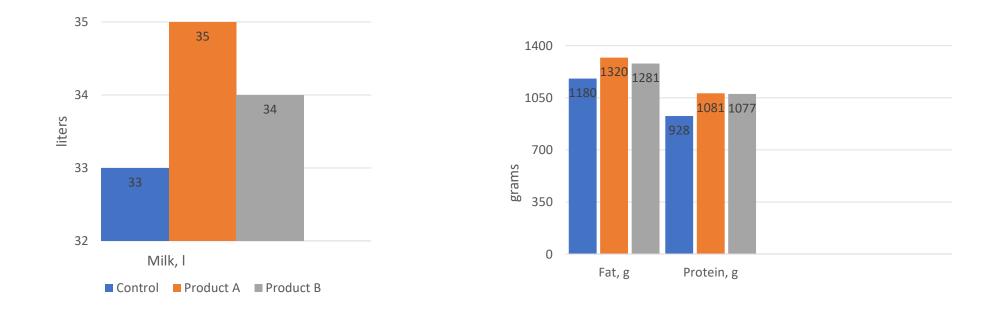

AMT S

2/26/2018

Scatterplot Matrix r=0.1872 r=0.8834 r=0.6776 r=0.7894 45-40-140 . • ME or MP 35limited milk 30-Set bet a 25-20r=0.4008 r=0.1872 r=0.2859 r=0.3141 3.4-3.2-Milk Protein % 3-2.8-2.6r=0.8834 r=0.2859 r=0.6066 r=0.8248 1400-1300-1200-1100-Protein 1000yield g 900er er er 800-700-600r=0.6776 r=0.6066 r=0.3141 r=0.5658 70-60-1.17 Total MET g 50-40-30r=0.4008 r=0.7894 r=0.5658 r=0.8248 180-160-LYS total g 140-120-100-20 25 30 35 40 45 2.6 2.8 3 3.2 3.4 600 800 1000 1200 100 120 140 160 180 30 40 50 60 70


AMT_sS

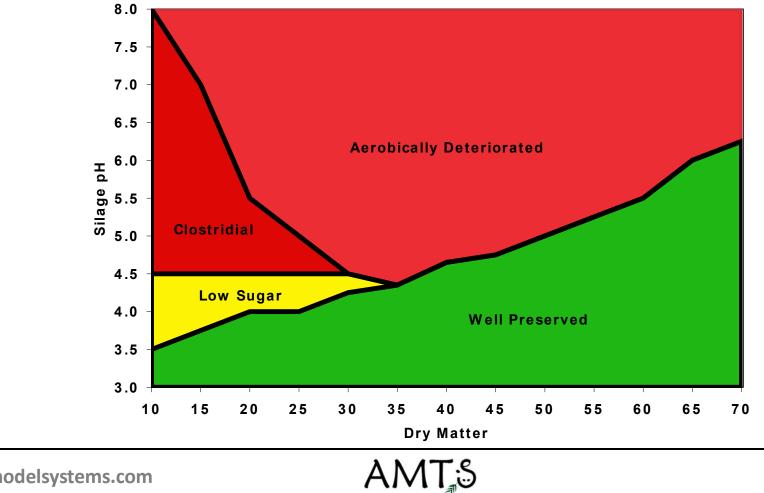
AA use expressed relative to energy


47


Two Products/Different Responses

AMT

Product Comparison


Time to change thinking

- Amino Acids for years were thought of, and marketed as, additives.
- This is NOT true. They are essential nutrients. Look at all the new data on MET and its impact on
 - Production
 - Immune function
 - Reproduction
 - Decisions should be based on the lost cost per gram of metabolizable AA

Successful implementation of the model

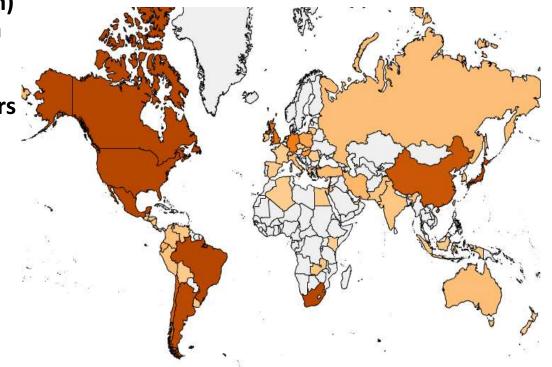
- Step 0: think like a microbial nutritionist first!
- Step 1: good inputs
 - bodyweight critical in all nutrition programs
- Step 2: maximize fermentable CHO intake
- Step 3: maintain peNDF to keep rumen health
- Step 4: adequate RDP supply/sources to support microbial growth
- Step 5: supplement the animal to achieve desired ME, MP, AA, fatty acid, Min/Vit levels to meet requirements.

The best formulated diet can fail

tom@agmodelsystems.com

52

Is the CNCPS a US-only model?


• CNCPS equations based on:

- Many breeds of cattle (not only Holstein)
- Req. equations use beef and sheep data
- Passage rate system from NORFOR
- Modeling principles by German, Dutch, Danish, UK, French and Swiss researchers

• CNCPS evaluated in:

- Irish pasture cows (in progress)
- Italian water buffalo
- Nelore cattle (Brazil)
- Mexican dairy farms
- Vietnamese small-holders
- Indian browsing
- Many other systems

• AMTS users in 40+ countries

tom@agmodelsystems.com

AMTS

Thank you

- Additional Resources:
 - Website: www.agmodelsystems.com (FREE 30-day trial)
 - Blog: <u>www.agmodelsystems.com/blog</u>
 - Educational webinars: <u>www.agmodelsystems.com/webinars</u>