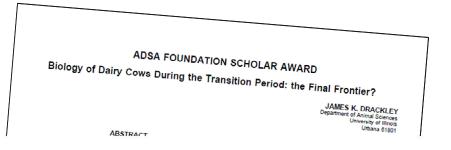
THE TRANSITION COW: PERFORMANCE, HEALTH & REPRODUCTION

Phil Cardoso, DVM, MS, PhD

UNIVERSITY OF ILLINOIS


https://vimeo.com/49423178

You don't choose who you fall in love with.

But your car you can.

Papers

ADSA FOUNDATION SCHOLAR AWARD

Biology of Dairy Cows During the Transition Period: the Final Frontier?

JAMES K. DRACKLEY

Department of Animal Sciences University of Illinois Urbana 61801

356 results in JDS

825 citations

acrease profitability of dairy cows. (Key words: transition, liver, lipid metabolism, di-

Abbreviation key: CPT-1 = carnitine palmitoyltransforase-1, FA = fatty acids, HDL = high density lipopro-tion period has received tremendous interest in recent

Received April 19, 1999. Accepted June 10, 1999.

1999 J Dairy Sci 82:2259-2273

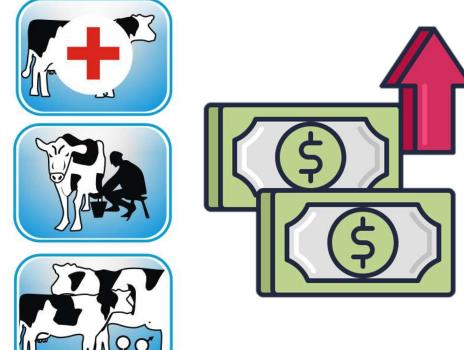
comention is that improved there is an an analysis the second sec during the transition period will provide the largest gains in productivity and profitability during the

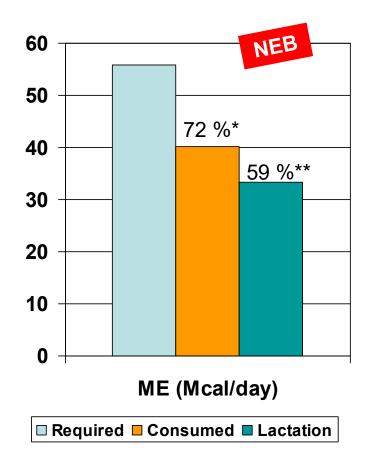
drained viscera, **PPAR** = peroxisome proliferator.acti. have been published recently (11, 37, 39, 45). Those $\begin{array}{l} \text{ and mean viscoria, } \mathbf{\Gamma} \in \mathbf{A} \mathbf{A} = \text{perovisione promerator-active viscorial provisions}, \\ \text{TG} = \text{triglyceride, VLDL} = \text{very low} \\ \text{reviews still represent the state of the art in those areas,} \\ \text{reviews still represent the state of the art in those areas,} \\ \text{reviews still represent the state of the art in those areas,} \\ \text{reviews still represent the state of the art in those areas,} \\ \text{reviews still represent the state of the art in those areas,} \\ \text{reviews still represent the state of the art in those areas,} \\ \text{reviews still represent the state of the art in those areas,} \\ \text{reviews still represent the state of the art in those areas,} \\ \text{reviews still represent the state of the art in those areas,} \\ \text{reviews still represent the state of the art in those areas,} \\ \text{reviews still represent the state of the art in those areas,} \\ \text{reviews still represent the state of the art in those areas,} \\ \text{reviews still represent the state of the art in those areas,} \\ \text{reviews still represent the state of the art in those areas,} \\ \text{reviews still represent the state of the art in those areas,} \\ \text{reviews still represent the state of the art in those areas,} \\ \text{reviews still represent the state of the art in those areas,} \\ \text{reviews still represent the state of the art in those areas,} \\ \text{reviews still represent the state of the art in those areas,} \\ \text{reviews still represent the state of the art in those areas,} \\ \text{reviews still represent the state of the art in those areas,} \\ \text{reviews still represent the state of the art in the state of the art in$ and it is not my intent to repeat those efforts. Rather, I will focus on some aspects of the importance of the transition period, including why I refer to it as the "final frontier," then discuss some recent insights from our laboratory on metabolism during the transition period. 2259

So, What do we want from this cow?

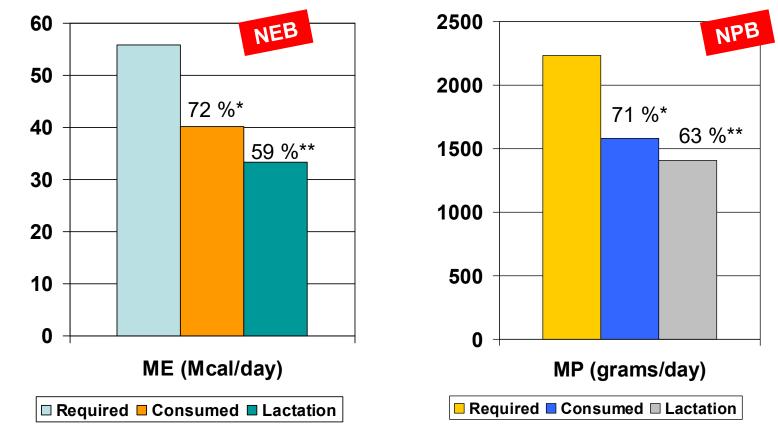
We should feed and manage dry and transition cows to:

- 1. Minimize health disorders
- 2. Maximize production
- 3. Maximize reproduction




We should feed and manage dry and transition cows to:

- 1. Minimize health disorders
- 2. Maximize production
- 3. Maximize reproduction

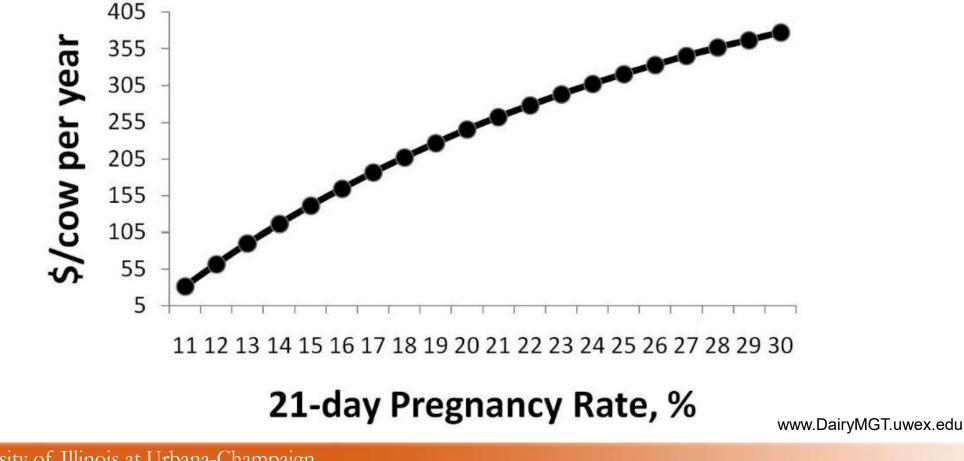

Metabolizable Energy (*ME*; Mcal/day) required and consumed at 7 days in milk

From CNCPS V6 – Assumes BW 700 kg, 15.5 kg DMI, 30 kg milk 3.8% fat, 3.2% prot.; * Percent of required; ** Percent of consumed

University of Illinois at Urbana-Champaign

Adapted from J.K. Drackley

ME and metabolizable protein (MP; g/d) required and consumed at 7 days in milk



From CNCPS V6 – Assumes BW 700 kg, 15.5 kg DMI, 30 kg milk 3.8% fat, 3.2% prot.; * Percent of required; ** Percent of consumed

University of Illinois at Urbana-Champaign

Adapted from J.K. Drackley

Economic Impact of Reproduction

University of Illinois at Urbana-Champaign

Cabrera, V. E. 2011

Reproduction: Early Embryonic Loss

Courtesy of Wiltbank

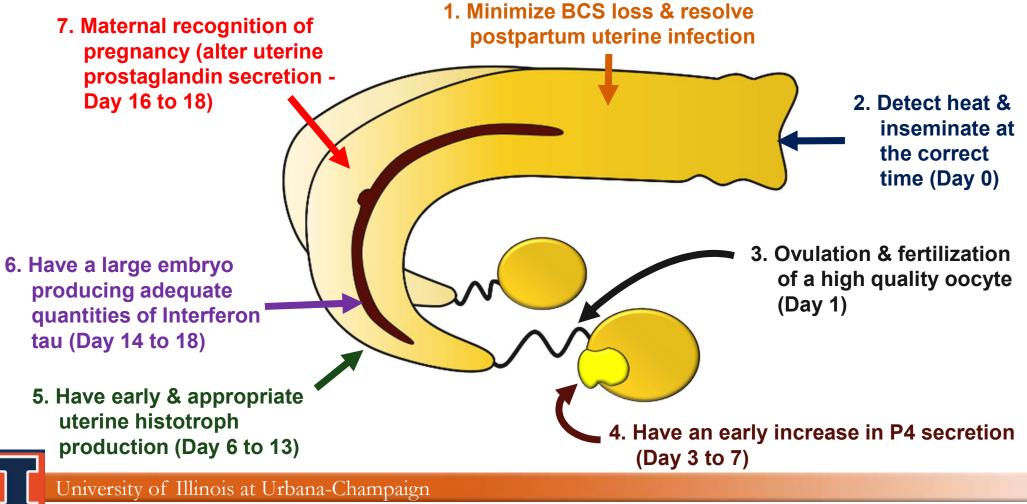
Reproduction: Early Embryonic Loss

Reference	Cows	Days 1 st Check	Days last Check	Days	Loss %	Loss/ Day %
Chebel et al., 2002a	195	28	42	14	17.9	1.28
Moreira et al., 2000a	139	27	45	18	20.7	1.15
Chebel et al., 2002b	1,503	31	45	14	13.2	0.94
Stevenson et al., 2000	203	28	45	17	15.8	0.93
Santos et al., 2002b	360	31	45	14	11.1	0.79
Santos et al., 2002a	220	27	41	14	10	0.71
Cerri et al., 2002	176	31	45	14	9.7	0.70
Juchem et al., 2002	167	28	39	11	11.4	1.03

Daily embryonic loss in the first 50 days of pregnancy = 0.9%

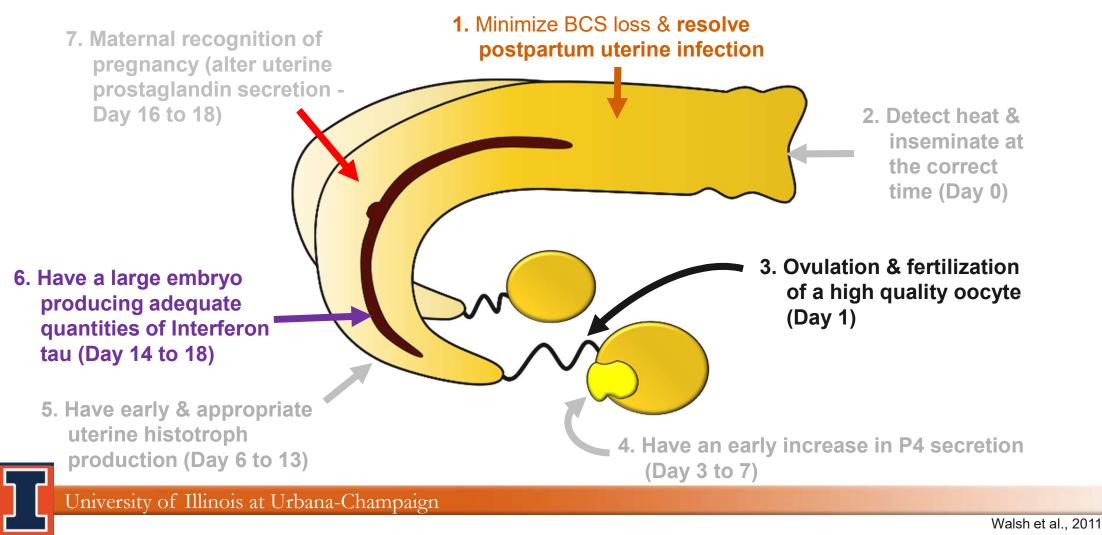
Reproduction: Early Embryonic Loss

Reference	Cows	Days 1 st Check	Days last Check	Days	Loss %	Loss/ Day %
Chebel et al., 2002a	195	28	42	14	17.9	1.28
Moreira et al., 2000a	139	27	45	18	20.7	1.15


\$152 to \$361 pregnancy loss - 1st month

of pregnancy. DeVries et al., 2006

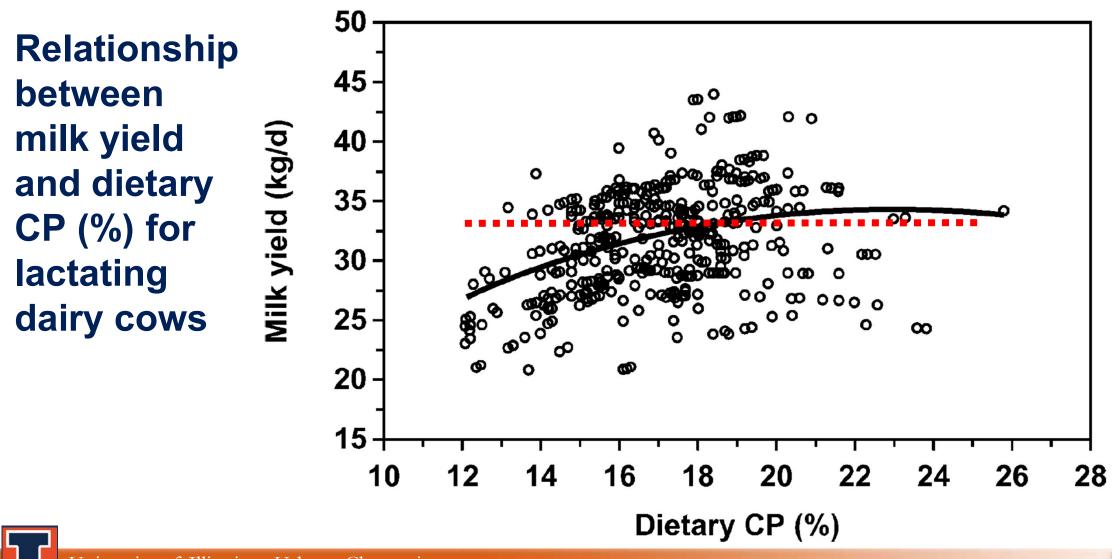
Santos et al., 2002a	220	21	4 1	14	10	0.71
Cerri et al., 2002	176	31	45	14	9.7	0.70
Juchem et al., 2002	167	28	39	11	11.4	1.03


Daily embryonic loss in the first 50 days of pregnancy = 0.9%

Factors Affecting Pregnancy in Dairy Cows

Walsh et al., 2011

Factors Affecting Pregnancy in Dairy Cows


The right diet

Dietary Recommendations for Dry Cows

- NEL: Control energy intake at 14 to 16 Mcal daily [diet ~ 1.32 Mcal/kg (0.60 Mcal/lb) DM] for mature cows
- Crude protein: 12 14% of DM
- Metabolizable protein (MP): > 1,200 g/d
- Starch content: 12 to 15% of DM (NFC < 26%)
- NDF from forage: 40 to 50% of total DM or 4.5 to 6 kg per head daily (~0.7 0.8% of BW). Target the high end of the range if more higher-energy fiber sources (like grass hay or low-quality alfalfa) are used, and the low end of the range if straw is used (2-5 kg)
- Total ration DM content: <50% (add water if necessary)
- Minerals and vitamins: follow guidelines (For close-ups, target values are 0.40% magnesium (minimum), 0.35 0.40% sulfur, potassium as low as possible (Mg:K = 1:4), a DCAD of near zero or negative, calcium without anionic supplementation: 0.9 to 1.2% (~125g) calcium with full anion supplementation: 1.5 to 2.0% (~200g), 0.35 0.42% phosphorus, at least 1,500 IU of vitamin E, and 25,000 30,000 IU of Vitamin D (cholecalciferol)

Dietary Recommendations for Dry Cows

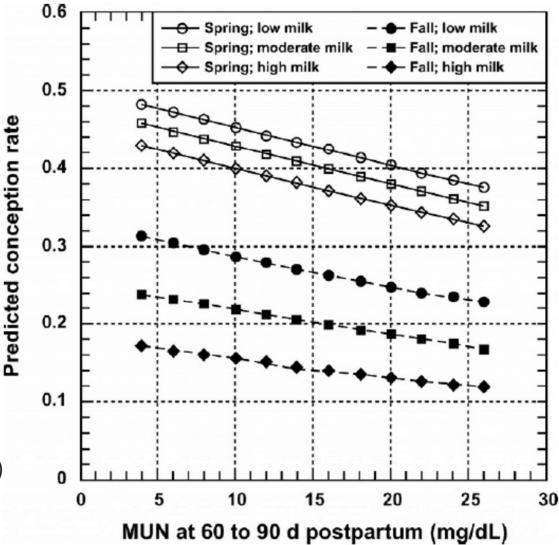
- NEL: Control energy intake at 14 to 16 Mcal daily [diet ~ 1.32 Mcal/kg (0.60 Mcal/lb) DM] for mature cows
- **Crude protein:** 12 14% of DM
- Metabolizable protein (MP): > 1,200 g/d
- Starch content: 12 to 15% of DM (NFC < 26%)
- NDF from forage: 40 to 50% of total DM or 4.5 to 6 kg per head daily (~0.7 0.8% of BW). Target the high end of the range if more higher-energy fiber sources (like grass hay or low-quality alfalfa) are used, and the low end of the range if straw is used (2-5 kg)
- Total ration DM content: <50% (add water if necessary)
- Minerals and vitamins: follow guidelines (For close-ups, target values are 0.40% magnesium (minimum), 0.35 0.40% sulfur, potassium as low as possible (Mg:K = 1:4), a DCAD of near zero or negative, calcium without anionic supplementation: 0.9 to 1.2% (~125g) calcium with full anion supplementation: 1.5 to 2.0% (~200g), 0.35 0.42% phosphorus, at least 1,500 IU of vitamin E, and 25,000 30,000 IU of Vitamin D (cholecalciferol)

Ipharraguerre and Clark, 2005

MUN is Negatively Associated with the First Al Conception Rate in Lactating Dairy Cows

No effect on subsequent Al

University of Illinois at Urbana-Champaign

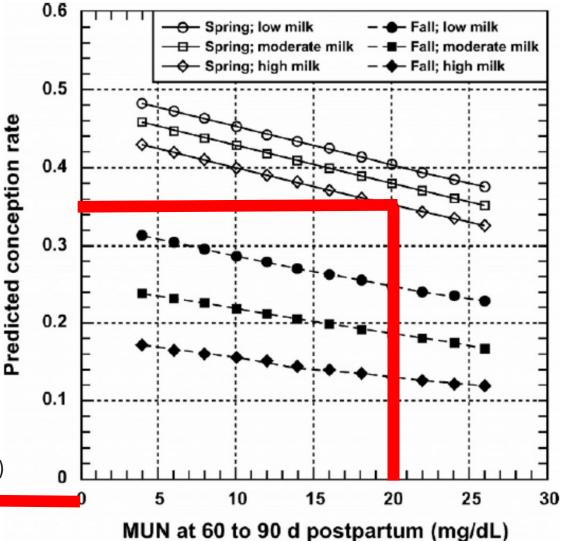

Guo et al., 2004

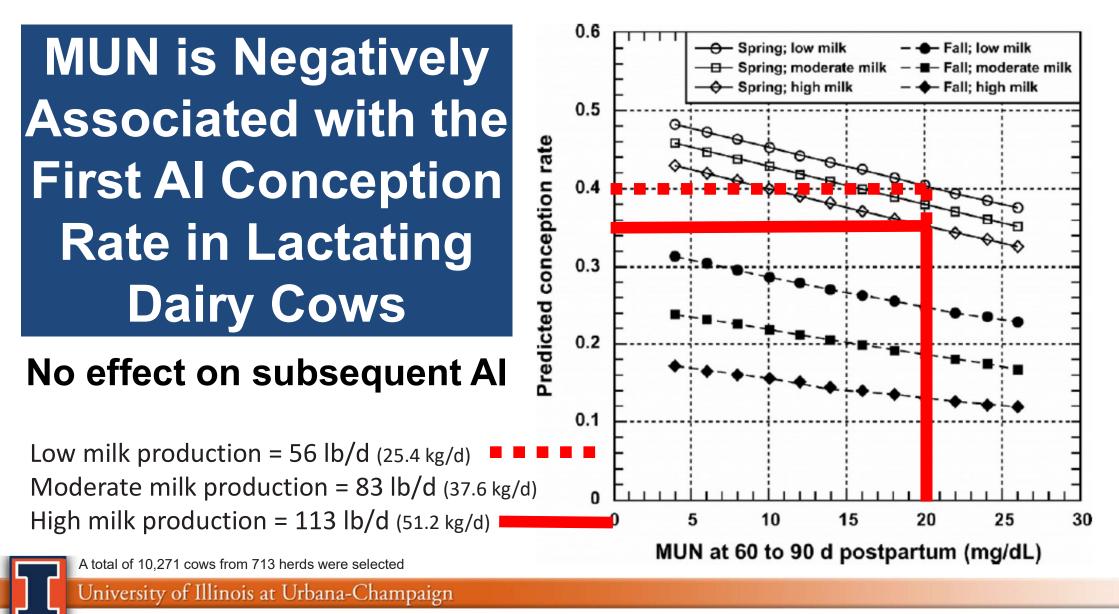
MUN is Negatively Associated with the First Al Conception Rate in Lactating Dairy Cows

No effect on subsequent Al

Low milk production = 56 lb/d (25.4 kg/d) Moderate milk production = 83 lb/d (37.6 kg/d) High milk production = 113 lb/d (51.2 kg/d)

A total of 10,271 cows from 713 herds were selected

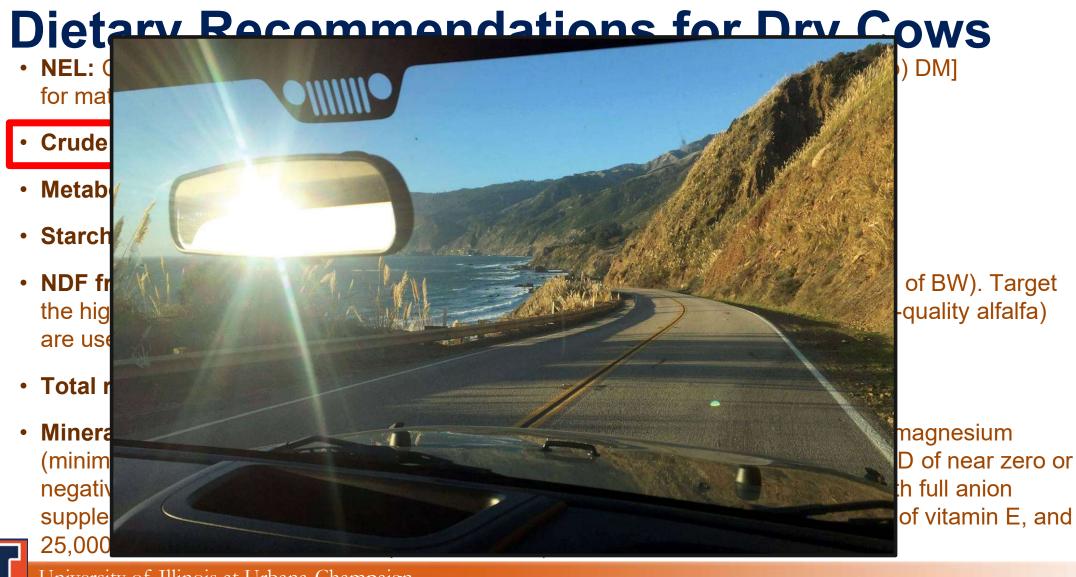



MUN is Negatively Associated with the First Al Conception Rate in Lactating Dairy Cows

No effect on subsequent Al

Low milk production = 56 lb/d (25.4 kg/d) Moderate milk production = 83 lb/d (37.6 kg/d) High milk production = 113 lb/d (51.2 kg/d)

A total of 10,271 cows from 713 herds were selected



Guo et al., 2004

Dietary Recommendations for Dry Cows NEL: Control energy intake at 14 to 16 Mcal daily [diet ~ 1.32 Mcal/kg (0.60 Mcal/lb) DM]

Dietary Recommendations for Dry Cows

- NEL: Control energy intake at 14 to 16 Mcal daily [diet ~ 1.32 Mcal/kg (0.60 Mcal/lb) DM] for mature cows
- Crude protein: 12 14% of DM
- Metabolizable protein (MP): > 1,200 g/d
- Starch content: 12 to 15% of DM (NFC < 26%)
- NDF from forage: 40 to 50% of total DM or 4.5 to 6 kg per head daily (~0.7 0.8% of BW). Target the high end of the range if more higher-energy fiber sources (like grass hay or low-quality alfalfa) are used, and the low end of the range if straw is used (2-5 kg)
- Total ration DM content: <50% (add water if necessary)
- Minerals and vitamins: follow guidelines (For close-ups, target values are 0.40% magnesium (minimum), 0.35 0.40% sulfur, potassium as low as possible (Mg:K = 1:4), a DCAD of near zero or negative, calcium without anionic supplementation: 0.9 to 1.2% (~125g) calcium with full anion supplementation: 1.5 to 2.0% (~200g), 0.35 0.42% phosphorus, at least 1,500 IU of vitamin E, and 25,000 30,000 IU of Vitamin D (cholecalciferol)

Dietary Recommendations for Dry Cows

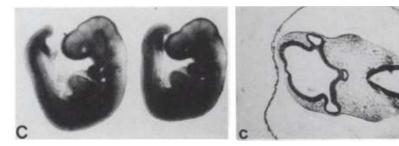
- NEL: Control energy intake at 14 to 16 Mcal daily [diet ~ 1.32 Mcal/kg (0.60 Mcal/lb) DM] for mature cows
- **Crude protein:** 12 14% of DM
- Metabolizable protein (MP): > 1,200 g/d
- Starch content: 12 to 15% of DM (NFC < 26%)
- NDF from forage: 40 to 50% of total DM or 4.5 to 6 kg per head daily (~0.7 0.8% of BW). Target the high end of the range if more higher-energy fiber sources (like grass hay or low-quality alfalfa) are used, and the low end of the range if straw is used (2-5 kg)

Methionine

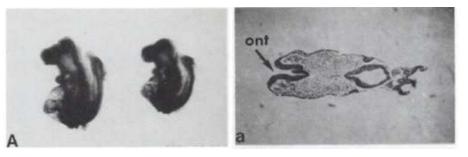
Lysine

- Total ration DM content: <50% (add water if necessary)
- Minerals and vitamins: follow guidelines (For close-ups, target values are 0.40% magnesium (minimum), 0.35 0.40% sulfur, potassium as low as possible (Mg:K = 1:4), a DCAD of near zero or negative, calcium without anionic supplementation: 0.9 to 1.2% (~125g) calcium with full anion supplementation: 1.5 to 2.0% (~200g), 0.35 0.42% phosphorus, at least 1,500 IU of vitamin E, and 25,000 30,000 IU of Vitamin D (cholecalciferol)

Can Methionine Prevent Embryonic Losses?



Can Methionine Prevent Embryonic Losses?


Whole Rat Embryos Require Methionine for Neural Tube Closure when Cultured on Cow Serum $^{1-4}$

CAROLINE N. D. COELHO, *†‡⁵ JAMES A. WEBER, *‡⁶ NORMAN W. KLEIN, *†‡⁷ WILLARD G. DANIELS,§ AND THOMAS A HOAGLAND†

Center for Environmental Health,* Department of Animal Science,† Department of Molecular and Cell Biology‡ and Department of Pathobiology,§ University of Connecticut, Storrs, CT 06269

Culture in Rat Serum

Culture in Bovine Serum

Cow serum with:	Embryo Protein	% Abnormal
None	73.7 <u>+</u> 8.6 ^a	100%

Cow serum with:	Embryo Protein	% Abnormal
None	73.7 <u>+</u> 8.6 ^a	100%
Amino acids + vitamins	130.0 <u>+</u> 7.7 ^b	0%

Cow serum with:	Embryo Protein	% Abnormal
None	73.7 <u>+</u> 8.6 ^a	100%
Amino acids + vitamins	130.0 <u>+</u> 7.7 ^b	0%
Amino acids	117.1 <u>+</u> 8.5 ^b	0%

Cow serum with:	Embryo Protein	% Abnormal
None	73.7 <u>+</u> 8.6 ^a	100%
Amino acids + vitamins	130.0 <u>+</u> 7.7 ^b	0%
Amino acids	117.1 <u>+</u> 8.5 ^b	0%
Vitamins	56.6 <u>+</u> 5.76 ^a	100%

Cow serum with:	Embryo Protein	% Abnormal
None	73.7 <u>+</u> 8.6 ^a	100%
Amino acids + vitamins	130.0 <u>+</u> 7.7 ^b	0%
Amino acids	117.1 <u>+</u> 8.5 ^b	0%
Vitamins	56.6 <u>+</u> 5.76 ^a	100%
Amino acids w/o methionine	82.9 <u>+</u> 8.7ª	100%

Cow serum with:	Embryo Protein	% Abnormal
None	73.7 <u>+</u> 8.6 ^a	100%
Amino acids + vitamins	130.0 <u>+</u> 7.7 ^b	0%
Amino acids	117.1 <u>+</u> 8.5 ^b	0%
Vitamins	56.6 <u>+</u> 5.76 ^a	100%
Amino acids w/o methionine	82.9 <u>+</u> 8.7ª	100%
Methionine	133.7 <u>+</u> 5.5 ^b	0%

Cow serum with:	Embryo Protein	% Abnormal
None	73.7 <u>+</u> 8.6 ^a	100%
Amino acids + vitamins	130.0 <u>+</u> 7.7 ^b	0%
Amino acids	117.1 <u>+</u> 8.5 ^b	0%
Vitamins	56.6 <u>+</u> 5.76 ^a	100%
Amino acids w/o methionine	82.9 <u>+</u> 8.7ª	100%
Methionine	133.7 <u>+</u> 5.5 ^b	0%

Coelho et al., 1989

J. Dairy Sci. 99:1–17 http://dx.doi.org/10.3168/jds.2015-10525 © American Dairy Science Association[®], 2016.

Better postpartal performance in dairy cows supplemented with rumenprotected methionine compared with choline during the peripartal period

Z. Zhou,* M. Vailati-Riboni,* E. Trevisi,† J. K. Drackley,* D. N. Luchini,‡ and J. J. Loor*1

*Mammalian NutriPhysioGenomics, Department of Animal Sciences and Division of Nutritional Sciences, University of Illinois, Urbana 61801 †Istituto di Zootecnica Facoltà di Scienze Agrarie, Alimentari e Ambientali, Università Cattolica del Sacro Cuore, 29122, Piacenza, Italy ‡Adisseo NA, Alpharetta, GA 30022

University of Illinois at Urbana-Champaign

Effects of Rumen-Protected Methionine or Choline Supplementation on the First Dominant Follicle

- 72 Holstein cows entering 2nd or greater lactation
- Experimental design was a randomized block design
- Housed in tie stalls with sand bedding
- Milked 3x per day
- Fed same basal TMR to meet but not exceed 100% of the energy requirements as outlined by NRC, 2001
 - From -34 d to calving: prepartum diet
 - From 0 to 30 DIM: fresh cow diet
 - From 31 to 72 DIM: high cow diet

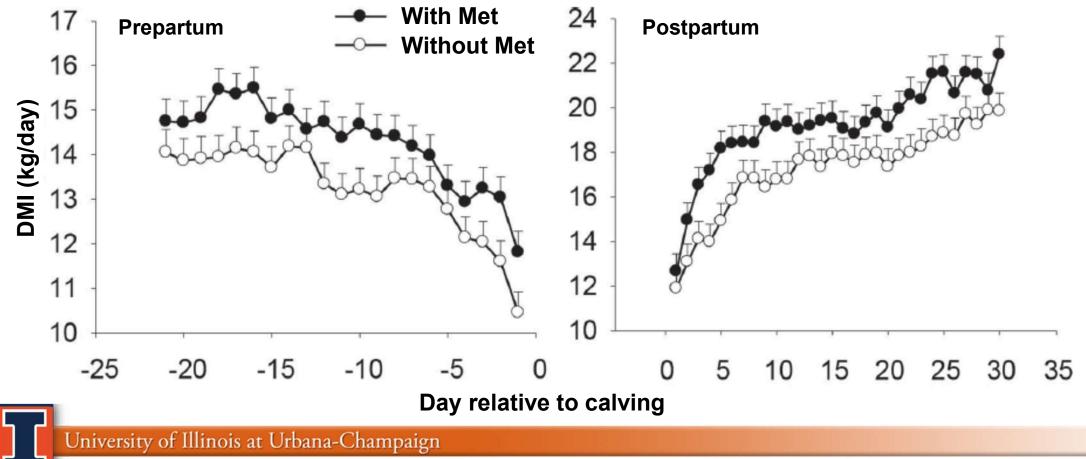
Treatments were given as top-dress

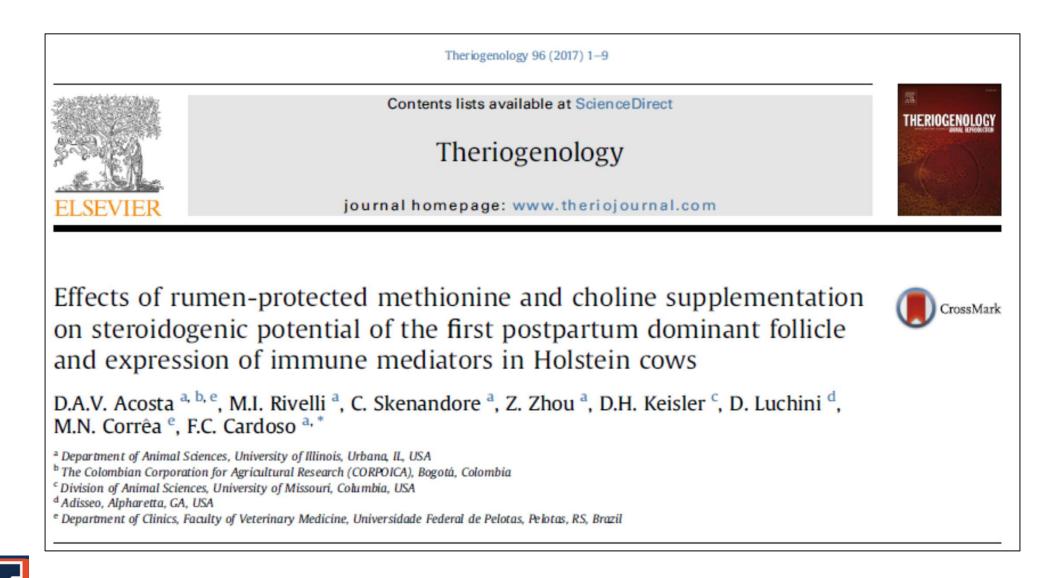
University of Illinois at Urbana-Champaign

Effects of Rumen-Protected Methionine or Choline Supplementation on the First Dominant Follicle

- Rumen-protected methionine (MET; n = 20, received 0.08% of the DM of the diet/d as methionine, Smartamine M[®], Adisseo, Alpharetta, GA, USA, to a Lys:Met = 2.9:1)
- Rumen-protected choline (CHO; n = 17, received 60 g/d choline, Reassure, Balchem Corporation, New Hampton, NY)
- Both rumen protected methionine and choline (MIX; n = 19, received 0.08% of the DM of the diet/d as methionine to a Lys:Met = 2.9:1 and 60 g/d choline)
- 4. No supplementation to serve as control
 (CON; n = 16, fed TMR with a Lys:Met = 3.5:1)

Diets		Pre-Fresh -21 d to calving	Fresh Calving to 30 DIM	High 31 to 73 DIM
	Ingredients			
	Alfalfa silage	8.35	5.07	6.12
	Alfalfa hay	4.29	2.98	6.94
	Corn silage	36.40	33.41	35.09
	Wheat straw	15.63	2.98	
	Cottonseed		3.58	3.26
	Wet brewers grain	4.29	9.09	8.16
	Soy hulls	4.29	4.18	4.74
_	Concentrate mix	26.75	38.71	35.69
Universit	ty of Illinois at Urbana-Champa	ign		

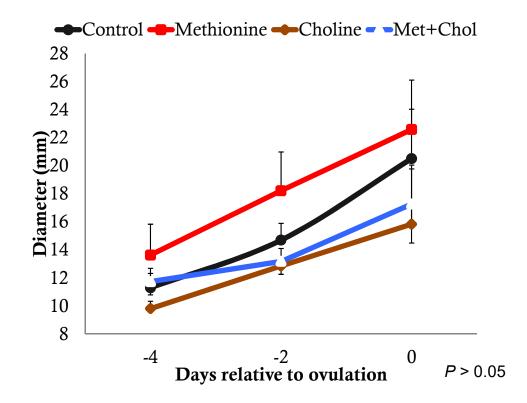

d Components
and
Yield
Milk

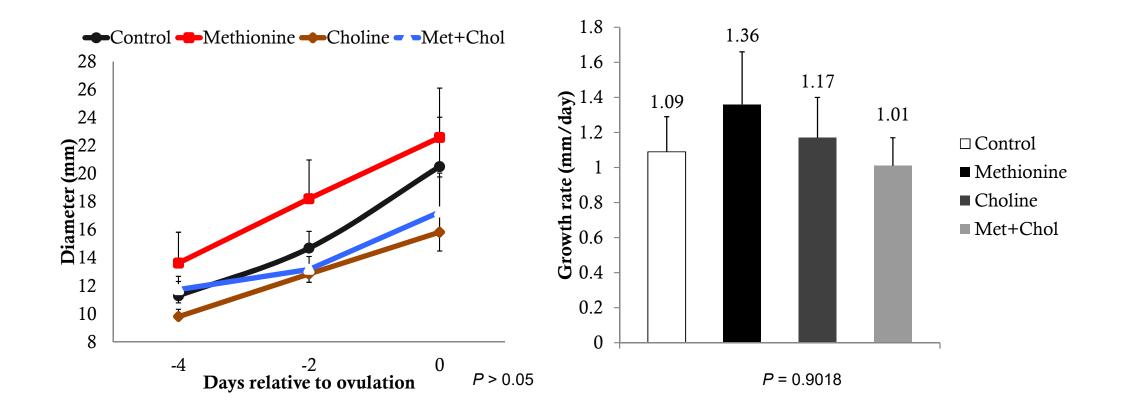

	MI	ET			P-va	lue	
Parameter	With	Without	SEM	MET	Parity	Time	M×T
Milk composition (%)							
Fat	3.72	3.74	0.11	0.92	-	<0.01	0.58
Protein	3.32 ^a	3.14 ^b	0.05	<0.01	-	<0.01	0.67
SCC	1.86	1.81	0.07	0.55	-	<0.01	0.85
Lactose	4.70	4.69	0.03	0.79	<0.01	<0.01	0.90
Total solids	12.65	12.39	0.12	0.13	-	<0.01	0.24
Other solids	5.62	5.60	0.03	0.58	<0.01	<0.01	0.82
MUN	12.80	12.94	0.30	0.75	-	0.50	0.92
Milk production (kg/d	ay)						
Milk yield	44.32ª	40.32 ^b	1.29	0.03	-	<0.01	0.60
Milk fat yield	1.67ª	1.53 ^b	0.05	0.04	-	<0.01	0.47
Milk protein yield	1.51ª	1.33 ^b	0.05	<0.01	-	<0.01	0.73
ECM	44.81 ^a	40.25 ^b	1.05	<0.01	-	<0.01	0.16

d Components
and
Yield
Milk

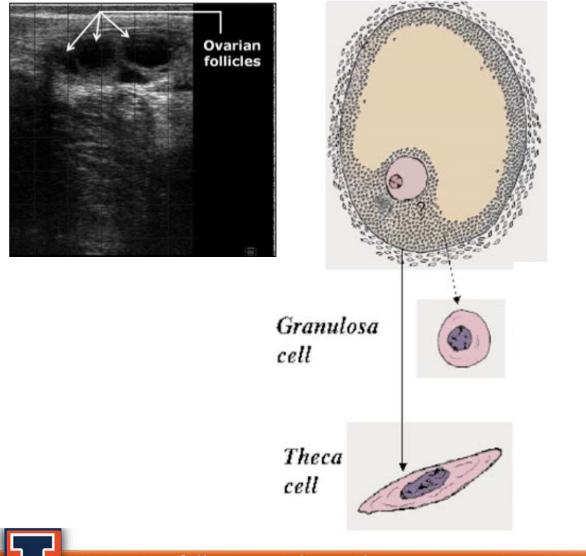
	ME	MET		<i>P</i> -value			
Parameter	With	Without	SEM	MET	Parity	Time	M×T
Milk composition (%)							
Fat	3.72	3.74	0.11	0.92	-	<0.01	0.58
Protein	3.32ª	3.14 ^b	0.05	<0.01	-	<0.01	0.67
SCC	1.86	1.81	0.07	0.55	-	<0.01	0.85
Lactose	4.70	4.69	0.03	0.79	<0.01	<0.01	0.90
Total solids	12.65	12.39	0.12	0.13	-	<0.01	0.24
Other solids	5.62	5.60	0.03	0.58	<0.01	<0.01	0.82
MUN	12.80	12.94	0.30	0.75	-	0.50	0.92
Milk production (kg/d	lay)						
Milk yield	44.32 ^a	40.32 ^b	1.29	0.03	-	<0.01	0.60
Milk fat yield	1.67ª	1.53 ^b	0.05	0.04	-	<0.01	0.47
Milk protein yield	1.51ª	1.33 ^b	0.05	<0.01	-	<0.01	0.73
ECM	44.81ª	40.25 ^b	1.05	<0.01	_	<0.01	0.16

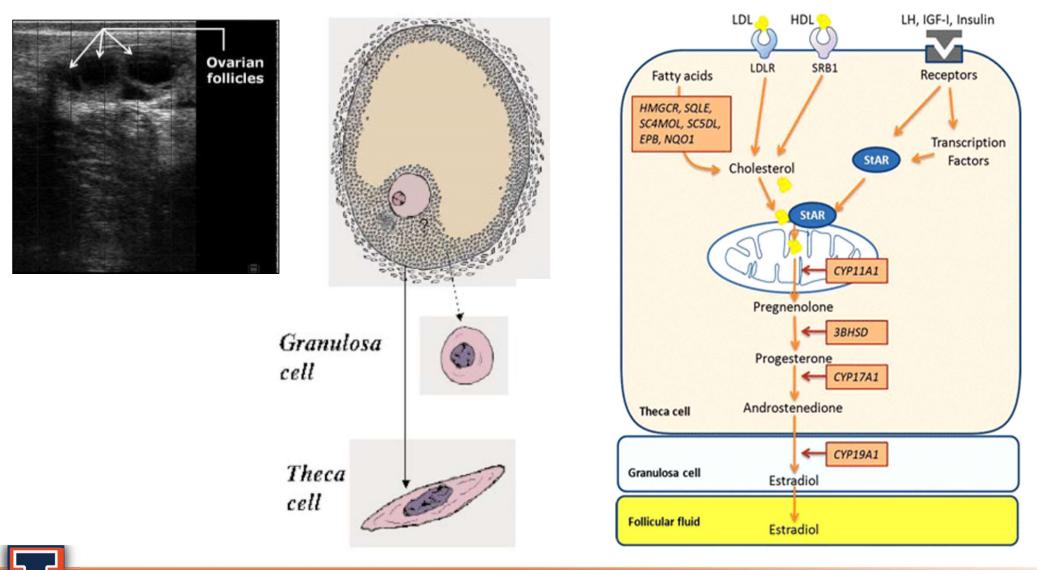
Improved postpartal performance in dairy cows supplemented with rumen-protected methionine during the peripartal period

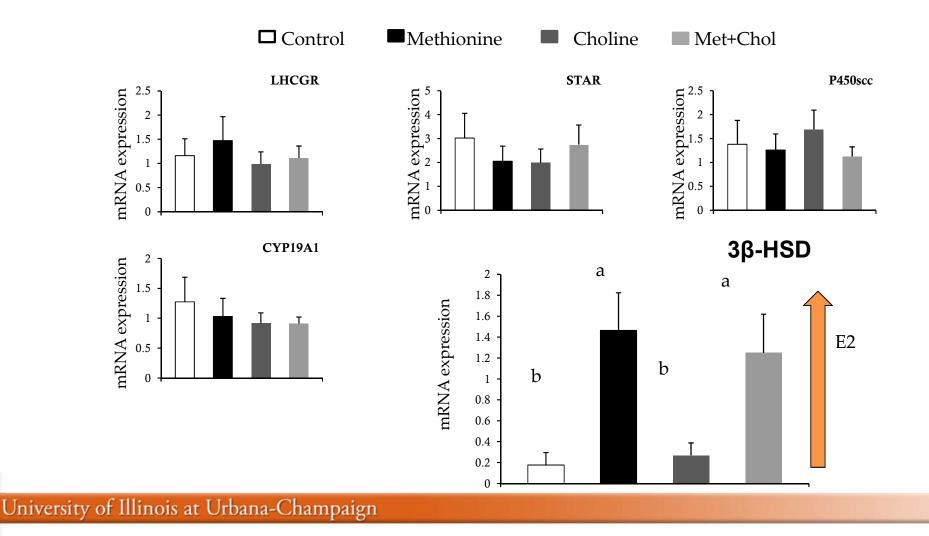


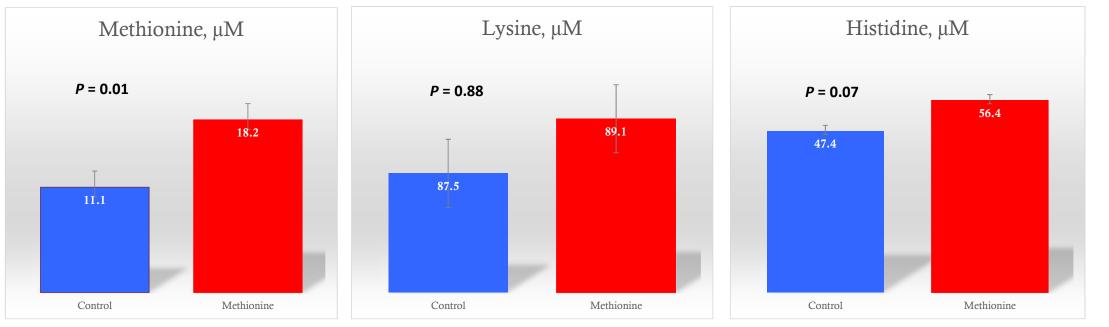


Ovulation, first dominant follicle (n = 40)Follicular Aspiration, 16mm (n = 40) Days postpartum 21 13 15 17 19 23 25 27 29 30 US US


★ Blood Samples US: Ultrasonography

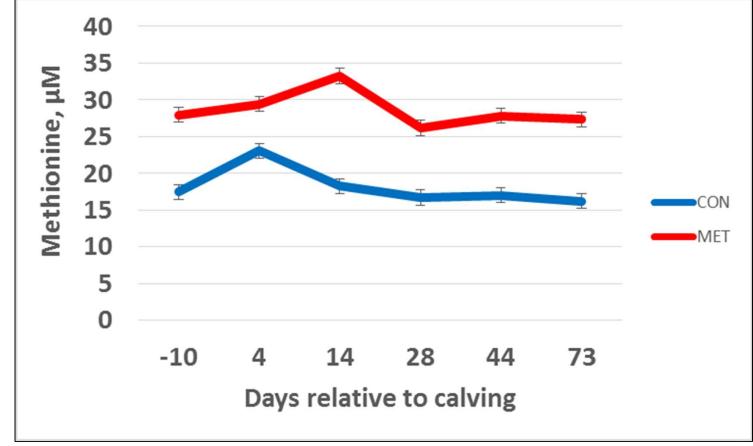



Walsh et al., 2012

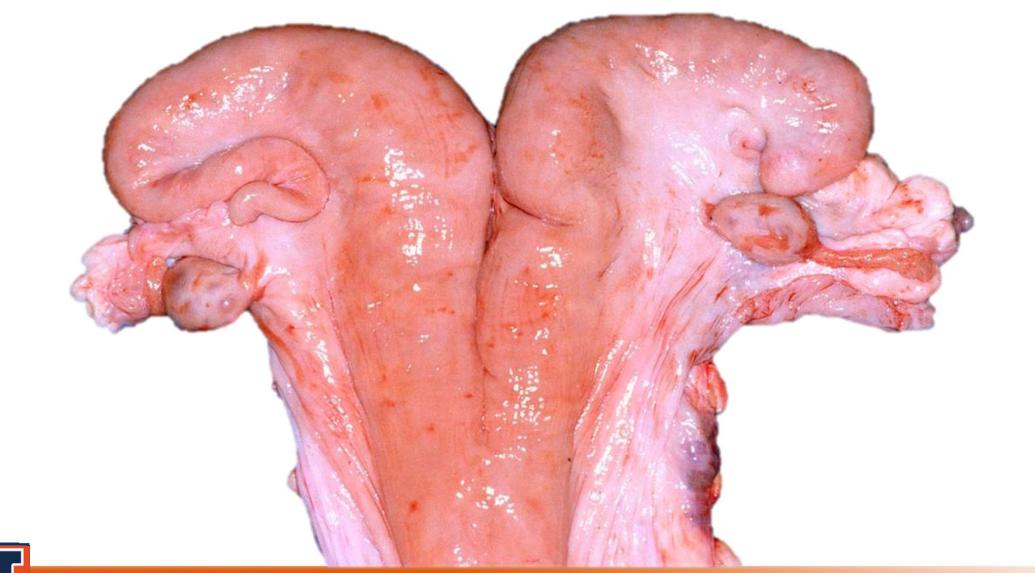


Walsh et al., 2012

Steroidogenesis Pathway



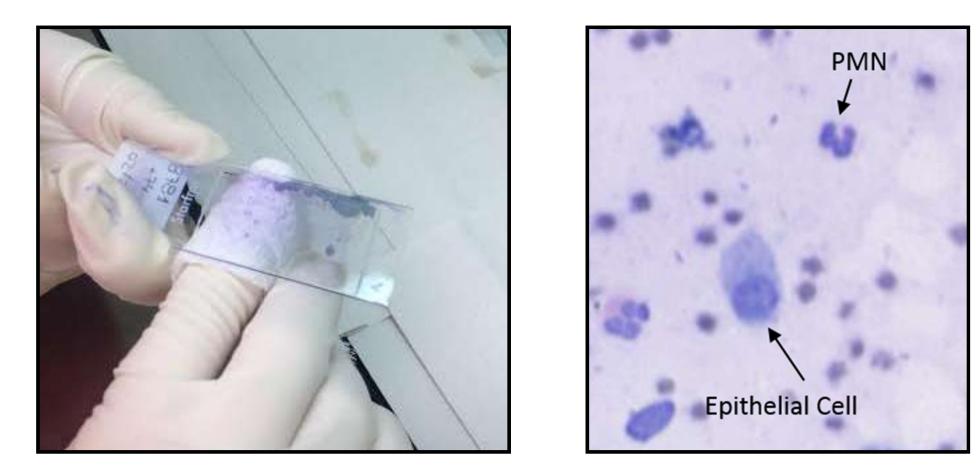
Follicular Fluid AA Concentration from Cows at the Day of Follicular Aspiration of the Dominant Follicle of the 1st Follicular Wave Postpartum (~16 mm)



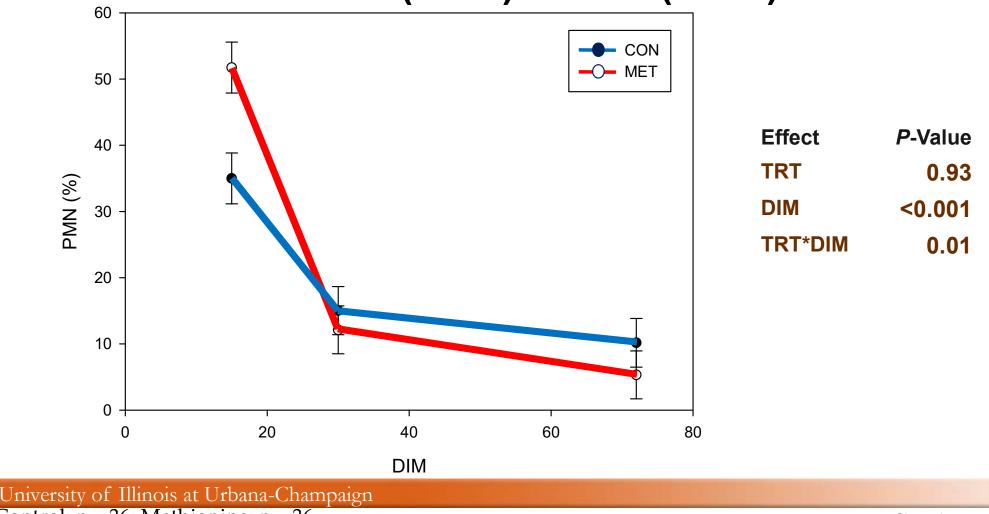
Serum <u>Methionine</u> Concentration from Cows Fed rum<u>en-protected methionine (MET) or not (CON)</u>

University of Illinois at Urbana-Champaign Control: n = 7; Methionine: n = 10

Stella et al., 2018



http://loribovinesection.blogspot.com/2013_07_01_archive.html



Uterine Cytology – Polymorphonuclear (PMN)

University of Illinois at Urbana-Champaign

PMN in Uterus of Cows Fed rumen-protected methionine (MET) or not (CON)

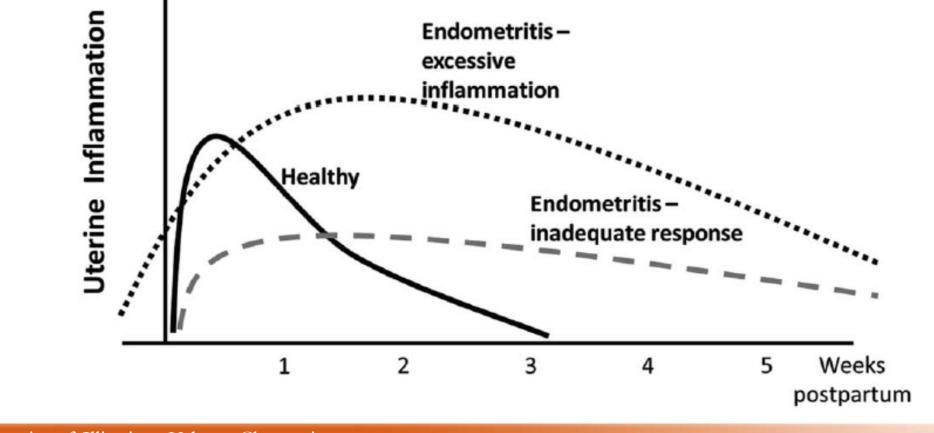
Control: n = 36; Methionine: n = 36

Skenadore et al., 2017

Animal (2014), 8:s1, pp 54–63 © The Animal Consortium 2014 doi:10.1017/S1751731114000524

Reproductive tract inflammatory disease in *postpartum* dairy cows

S. J. LeBlanc[†]

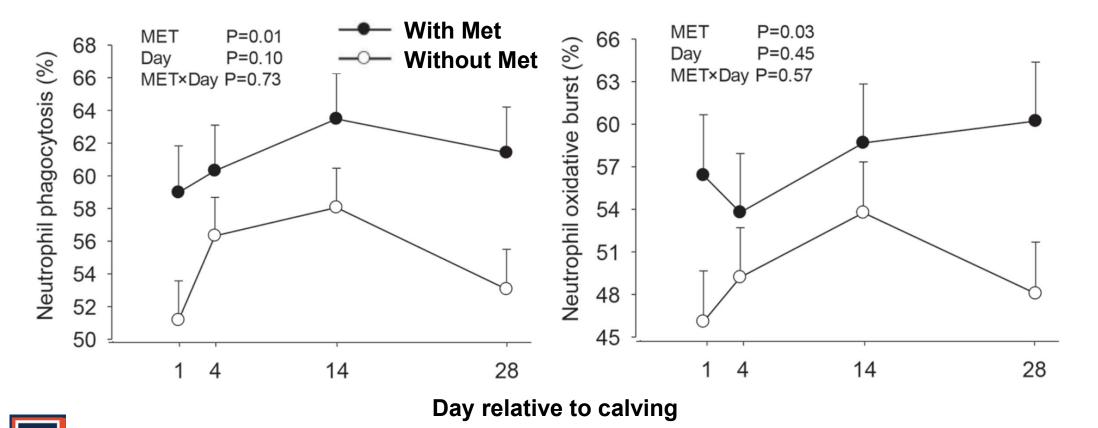

Department of Population Medicine, University of Guelph, Guelph, ON, Canada N1G 2W1

(Received 23 October 2013; Accepted 10 February 2014; First published online 28 March 2014)

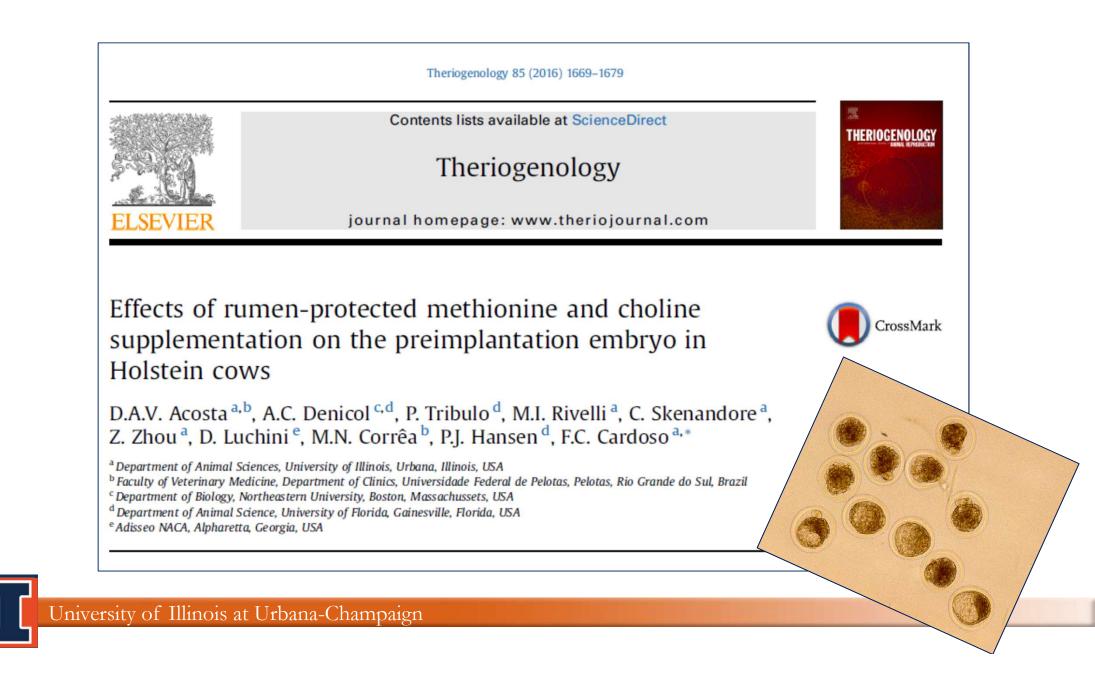
University of Illinois at Urbana-Champaign

Schematic Representation of Concepts of the Patterns of Immune and Inflammatory Response in Dairy Cows in the Postpartum Period

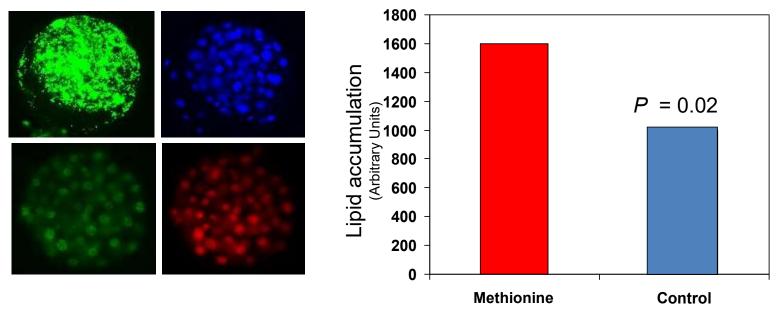
J. Dairy Sci. 99:1–14 http://dx.doi.org/10.3168/jds.2016-10986 © American Dairy Science Association[®], 2016.


Rumen-protected methionine compared with rumen-protected choline improves immunometabolic status in dairy cows during the peripartal period

Z. Zhou,* O. Bulgari,*† M. Vailati-Riboni,* E. Trevisi,‡ M. A. Ballou,§ F. C. Cardoso,* D. N. Luchini,# and J. J. Loor*¹


*Mammalian NutriPhysioGenomics, Department of Animal Sciences and Division of Nutritional Sciences, University of Illinois, Urbana 61801 †Dipartimento di Medicina Molecolare e Traslazionale, Università degli Studi di Brescia, 25121 Brescia, Italy ‡Istituto di Zootecnica Facoltà di Scienze Agrarie, Alimentari e Ambientali, Università Cattolica del Sacro Cuore, 29122, Piacenza, Italy \$Department of Animal Sciences, Texas Tech University, Lubbock 79409 #Adisseo, Alpharetta, GA 30022

Rumen-protected methionine improves immunometabolic status in dairy cows during the peripartal period



University of Illinois at Urbana-Champaign

Effect of Methionine Supplementation from -21 to 72 Days relative to calving on Lipid Accumulation of Preimplantation Embryos

Embryos (n = 37) harvested 7 d after timed AI at 63 DIM from cows fed a control diet or the control diet enriched with rumen-protected methionine.

Fluorescence intensity of Nike Red staining

This is happening... Patients are seeking to genetically modify their embryos to improve their IQ

From Dr. Schatten University of Pittsburgh School of Medicine

ife Chances	High Risk	Uphill Battle	Keeping Up	Out Ahead	Yours to Lose
raining ityle —	Slow, sim supervis	ple,	Mastery learning.		
areer Votential		Assembler, food service, nurse's aide	Clerk, teller, police officer, machinist, sales	Manager, teacher, accountant	Attorney, chemist, executive
۹	70	80	90 100 1	10 120	130
	Populat	ion Percentage			
otal opulation istribution	5	20	50	20	5
ut of labor prce more han 1 month ut of year men)	22	19	15	14	10
nemployed lore than month out f year (men)	12	10	7	7	2
ivorced in years	21	22	23	15	9
ad illegitimate hildren vomen)	32	17	8	4	2
ives in overty	30	16	6	3	2
ver icarcerated nen)	7	7	3	1	0
hronic welfare					

From Dr. Schatten University of Pittsburgh School of Medicine

		Style	Slow, sin supervis	Assembler,	Mastery learning hands-on		Attraney		
		Career Potential		food service, nurse's aide	Clerk, teller, police officer, machinist, saler	teacher, accountant	Attorney, chemist, executive	1	
		10	70	80	90 100	110 120	130	6	
an and the second			Populat	tion Percentages					CLE
Divorced in 5 years	21		22		2	3		15	9
Had illegitimate children (women)	32		17		5	5		4	2
CALIFORNIA CONTRACTOR	122	Divorced in	21	22	23	15	9		100 8.3
Ever incarcerated (men)	7		7		;	3		1	0

PLOS ONE

RESEARCH ARTICLE

Effect of feeding rumen-protected methionine on productive and reproductive performance of dairy cows

Mateus Z. Toledo¹, Giovanni M. Baez^{1¤a}, Alvaro Garcia-Guerra^{1,2¤b}, Nelson E. Lobos¹, Jerry N. Guenther¹, Eduardo Trevisol¹, Daniel Luchini³, Randy D. Shaver¹, Milo C. Wiltbank^{1,2}*

1 Department of Dairy Science, University of Wisconsin-Madison, Madison, Wisconsin, Unites States of America, 2 Endocrinology and Reproductive Physiology Program, University of Wisconsin-Madison, Madison, WI, United States of America, 3 Adisseo USA Inc., Alpharetta, Georgia, Unites States of America

¤a Current address: Universidad Francisco de Paula Santander, Cucuta, Colombia
 ¤b Current address: Department of Animal Sciences, Ohio State University, Columbus, Ohio, United States of America

* wiltbank@wisc.edu

University of Illinois at Urbana-Champaign

Effect of Supplementation with Rumen-Protected Methionine (RPM) on Reproduction of Lactating Dairy Cows

Cows were fed a basal TMR (6.9% Lys of MP and 1.87% Met of MP) from 30 ± 2 to 128 ± 2 DIM and assigned to two treatments:

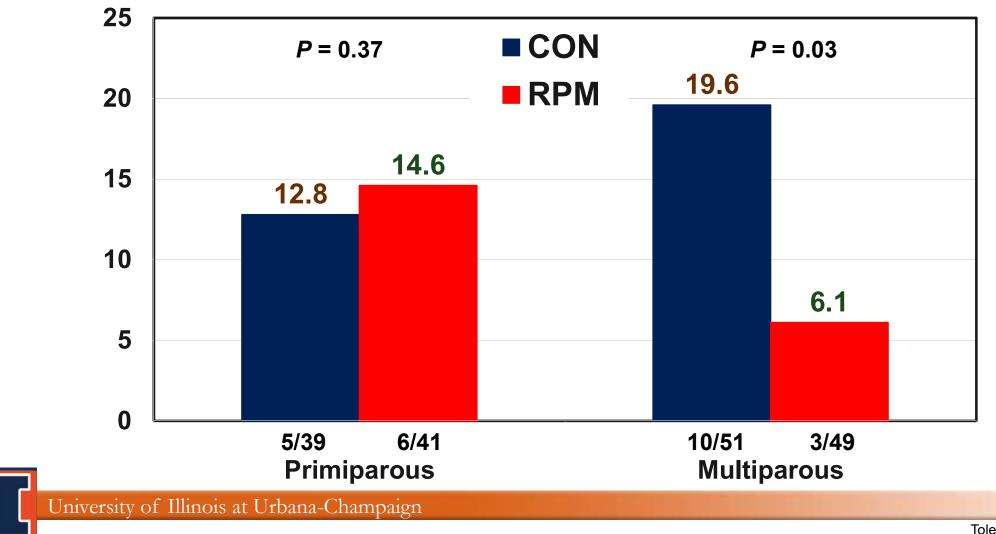
RPM: Basal TMR top dressed daily with RPM

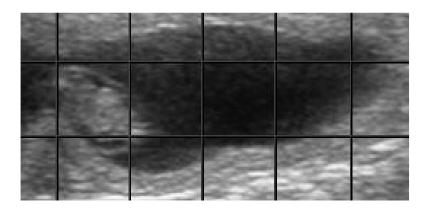
CON: Basal diet top dressed daily with DDG

University of Illinois at Urbana-Champaign

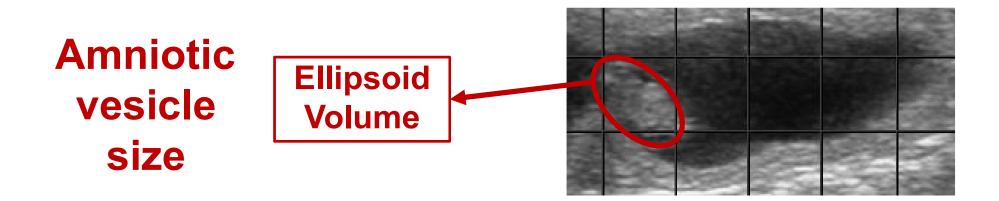
Effect of Supplementation with Rumen-Protected Methionine (RPM) on Reproduction of Lactating Dairy Cows

RPM cows were top dressed with 50 g (29 g DDG and 21 g of Smartamine M) CON cows were top dressed with 50 g of DDG

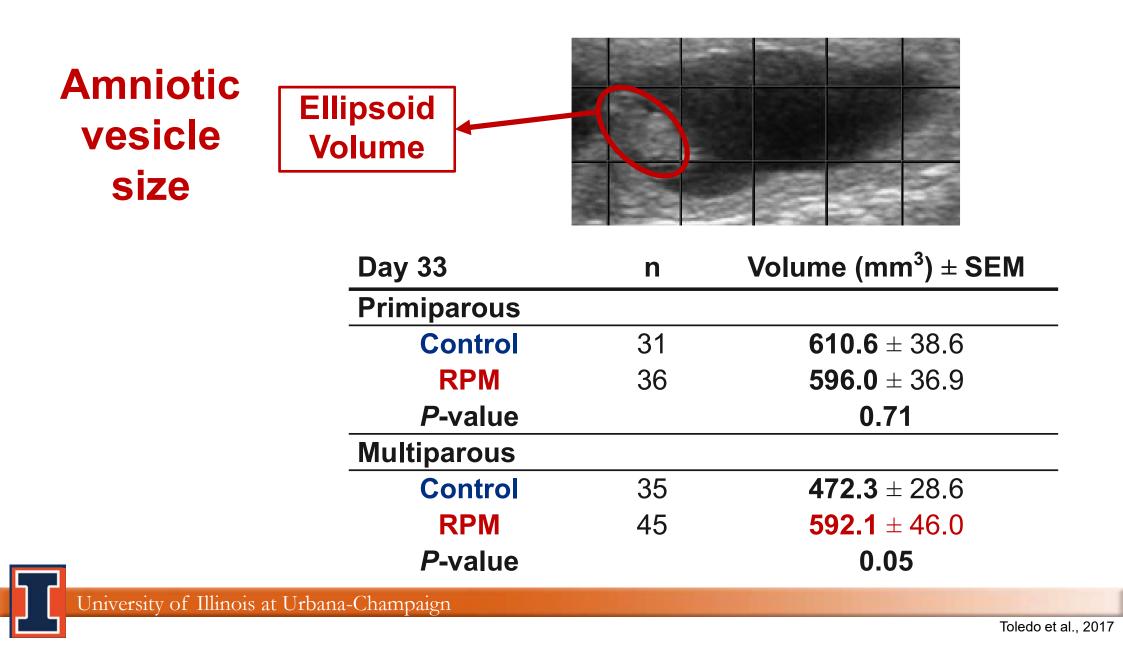



Animals

	CONTROL	RPM	TOTAL
Primiparous	68	70	138
Multiparous	85	86	171
TOTAL	153	156	309

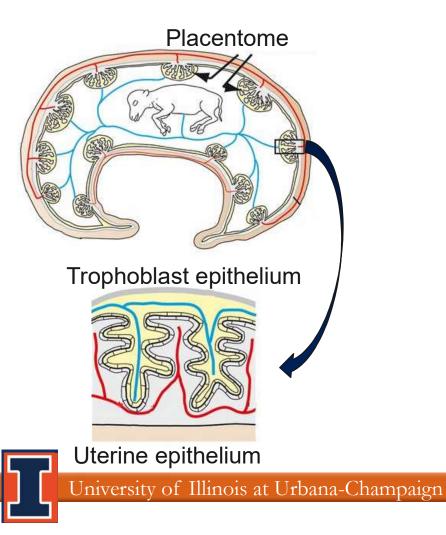


Pregnancy Losses (%) from 28 to 61 days after AI

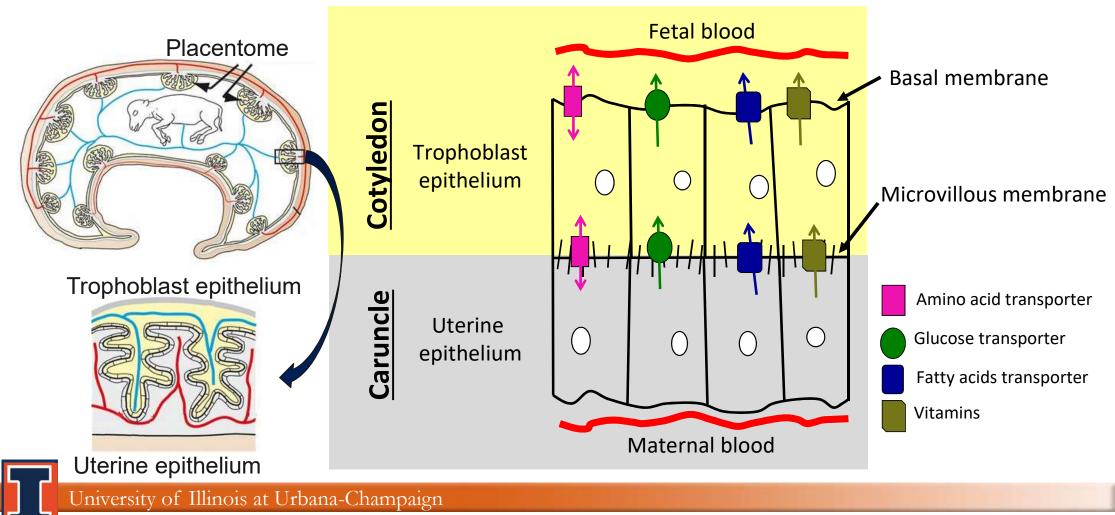


Toledo et al., 2017

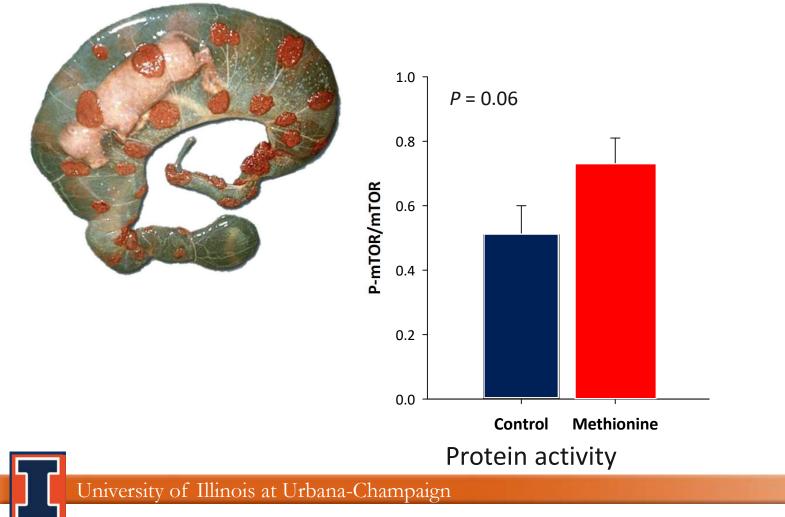
The Journal of Nutrition **Biochemical, Molecular, and Genetic Mechanisms**


Placentome Nutrient Transporters and Mammalian Target of Rapamycin Signaling Proteins Are Altered by the Methionine Supply during Late Gestation in Dairy Cows and Are Associated with Newborn Birth Weight

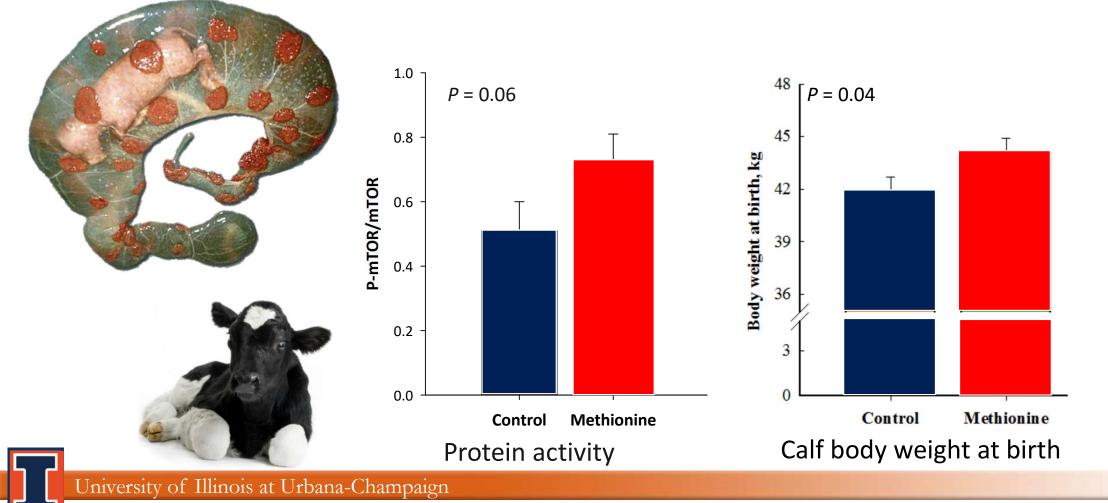
Fernanda Batistel,¹ Abdulrahman SM Alharthi,¹ Ling Wang,³ Claudia Parys,⁴ Yuan-Xiang Pan,² Felipe C Cardoso,¹ and Juan J Loor¹


Division of Nutritional Sciences, Departments of ¹Animal Sciences and ²Food Science and Human Nutrition, University of Illinois, Urbana, IL; ³Department of Animal Science, Southwest University, Rongchang, China; and ⁴Evonik Nutrition & Care GmbH, Hanau-Wolfgang, Germany

Effects of maternal nutrition on placenta



Effects of maternal nutrition on placenta


Batistel et al., 2017

Effects of maternal nutrition on placenta

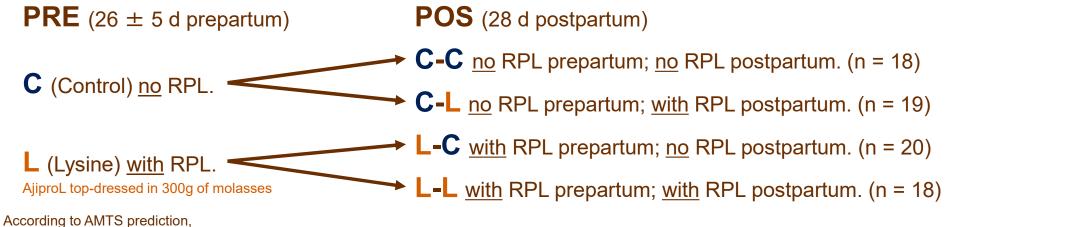
Batistel et al., 2017

Effects of maternal nutrition on placenta and calf

Effect of Supplementation with Rumen-Protected Lysine (RPL) During the Transition Period of Holstein Cows

PRE (26 \pm 5 d prepartum)

C (Control) no RPL.


L (Lysine) with RPL. AjiproL top-dressed in 300g of molasses

University of Illinois at Urbana-Champaign

Fehlberg et al., unpublished

Effect of Supplementation with Rumen-Protected Lysine (RPL) During the Transition Period of Holstein Cows

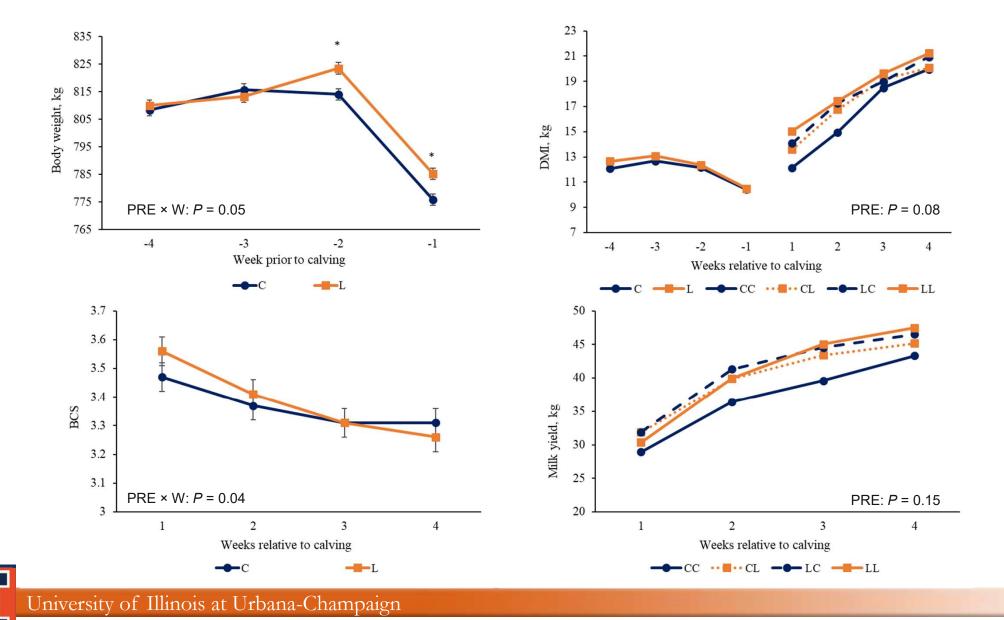
Prepartum:

- Cows in **C** consuming the prepartum diet received 1.17 kg of MP per d, resulting in <u>6.86% MP as Lys, 2.98 % MP as Met</u>, and 2.71 % MP as His with a Lys:Met of 2.30 and His:Met of 0.92.
- Cows in L received 1.19 kg of MP per d, resulting in 8.24 % MP as Lys, 2.94 % MP as Met, and 2.67 % MP as His with a Lys:Met of 2.80 and His:Met of 0.92.
- Postpartum:
 - Cows in C consuming the postpartum diet received 2.28 kg of MP per d, resulting in <u>6.27% MP as Lys, 2.54 % MP as Met</u>, and 2.42 % MP as His with a Lys:Met of 2.46 and His:Met of 0.94.
 - Cows in L received 2.22 kg of MP per d, resulting in 7.15 % MP as Lys, 2.55 % MP as Met, and 2.40 % MP as His with a Lys: Met of 2.80 and His: Met of 0.93.

University of Illinois at Urbana-Champaign

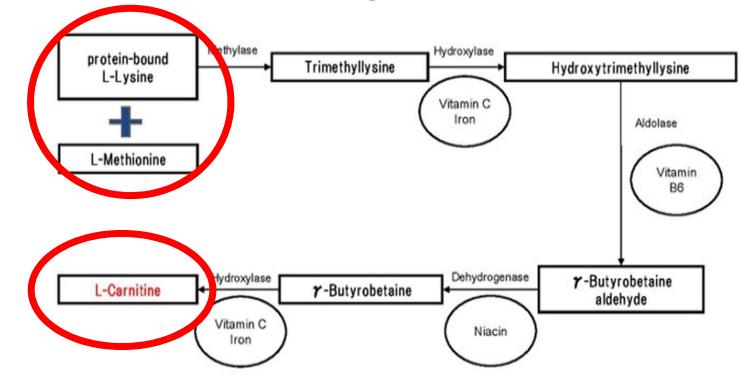
Fehlberg et al., *unpublished*

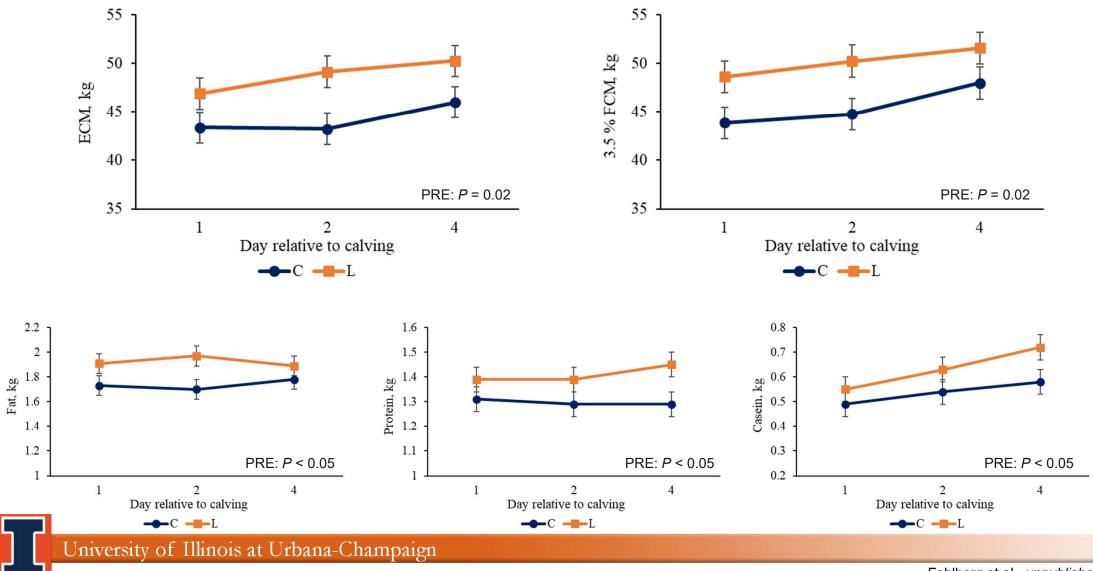
TMR


Ingredient (% of DM)	Prepartum	Postpartum	
Corn silage ^(34.7% DM)	31.06	39.38	
Canola meal	1.45	5.36	
Alfalfa hay	-	20.95	
Wheat midds	4.10	-	
Corn gluten feed	6.69	-	
Soybean meal, 48% CP	2.19	-	
Wheat straw	40.25	-	
Dry ground corn grain	0.16	15.26	
Smartamine M	0.12	0.09	
Energy booster100	-	1.93	
SoyPlus	5.74	6.66	
Animate	3.85	-	
Urea 46%	0.23	0.30	
Magnesium oxide	-	0.09	
Magnesium sulfate	0.25	-	
Dicalcium phosphate	-	0.33	
Molasses beet	-	4.43	
Calcium carbonate	2.08	-	
Vit. and mineral mix	1.31	-	
Vit. and mineral mix	-	4.73	

Chemical composition

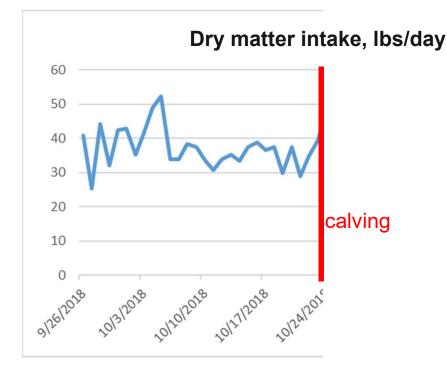
ltem	Prepartum	Postpartum
DM, %	43.43 ± 1.42	45.71 ± 1.64
CP, % of DM	14.22 ± 0.68	16.75 ± 1.06
ADF, % of DM	28.41 ± 2.80	20.94 ± 1.77
NDF, % of DM	44.82 ± 2.75	31.25 ± 3.29
Lignin, % of DM	4.44 ± 0.74	3.80 ± 0.49
Starch, % of DM	13.99 ± 1.69	24.39 ± 2.62
Crude fat, % of DM	3.03 ± 0.21	4.95 ± 0.51
Ash, % of DM	10.34 ± 1.34	9.16 ± 0.74
NE _L , Mcal/kg of DM ³	1.44 ± 0.03	1.67 ± 0.05
Ca, % of DM	1.46 ± 0.35	1.12 ± 0.21
P, % of DM	0.37 ± 0.04	0.41 ± 0.04
Mg, % of DM	0.50 ± 0.07	0.38 ± 0.03
K, % of DM	1.12 ± 0.11	1.75 ± 0.17
Mn, ppm	91.9 ± 17.5	99.3 ± 13.7
Mo, ppm	1.20 ± 0.30	1.32 ± 0.30

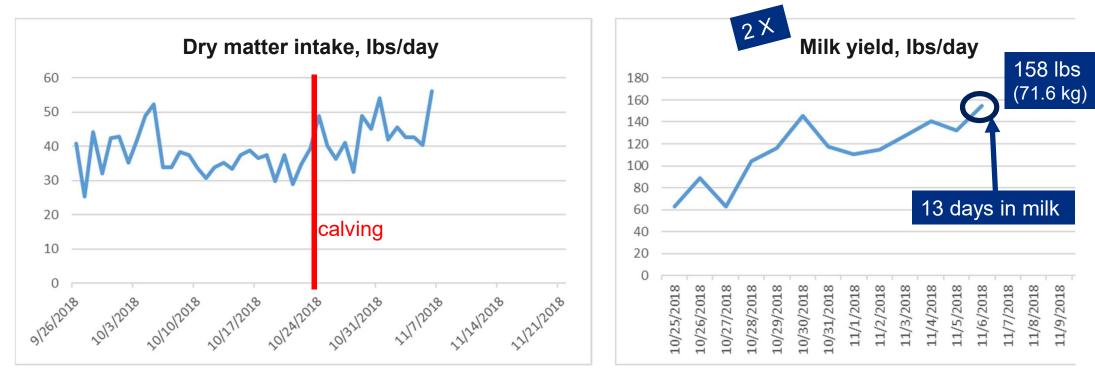



Fehlberg et al., unpublished

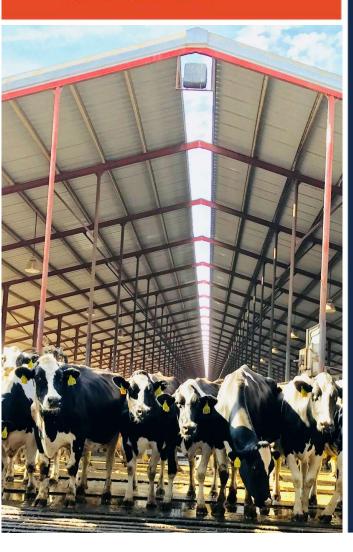
Fehlberg et al., unpublished

Carnitine is synthesized in mammals from Lysine residues


Fehlberg et al., unpublished



Cow	Colostrum Weight, Ibs	Colostrum Brix, 9	% Fat, %	Total Protein, %	Total Solids, %
1311	13.15	25.6	3.43	17	24.26


TT · ·	C 7	-11 •		гт 1 .	\sim 1	
University	ot I	111015	at	Urbana-	ham	naton
Chiveroney			au		Onann	Pasi

Summary

- Manage dietary ingredients for
 - Manage for adequate CP (~13% Dry & 16% Lactation)
 - Metabolizable methionine in TMR (30 g/d Dry & 46 g/d Lactation)
 - ~ 15 g/d Dry & 20 g/d Lactation of rumen-protected methionine
 - Metabolizable lysine in TMR (84 g/d Dry & 129 g/d Lactation)
 - ~ 26 g/d Dry & 36 g/d Lactation rumen-protected lysine
 - Balanced for the ratios: Met 2.6% MP; Lys, 7.0% MP (LYS:MET ratio of 2.7:1)
 - Methionine supply relative to energy is ~ 0.97-1.14 g/Mcal ME
 - Lysine supply relative to energy is ~ 2.72-3.03 g/Mcal ME
 - Pregnancy rate > 20% (go for > 25%; conception rate at first AI > 40%)
 - Embryonic death < 15% (go for < 10%)

IILLINOIS

Animal Sciences college of agricultural, consumer & environmental sciences

THANK YOU!

cardoso2@Illinois.edu

www.dairyfocus.illinois

