PROTEIN DEFICIENCY AND ITS EFFECTS IN PERIPARTURIENT DAIRY COWS

MOGENS LARSEN¹, HÉLÈNE LAPIERRE², CHRISTINE M. RØNTVED¹, NIELS B. KRISTENSEN¹, AND MARTIN R. WEISBJERG¹

¹ DEPARTMENT OF ANIMAL SCIENCE, AARHUS UNIVERSITY – FOULUM ² AGRICULTURE AND AGRI-FOOD CANADA

THE OVERALL POSTPARTUM SITUATION - NEGATIVE ENERGY BALANCE

NOVEMBER 13TH, 2019 **PROTEIN FOR PERIPARTURIENT COWS** MOGENS LARSEN

POSTPARTUM PROTEIN DEFICIENCY

Great focus on postpartum fat mobilisation > Contrastingly little focus on protein mobilisation

FOCUS ON AMINO ACID SUPPLY

Aim

> Increase AA availability in peripheral tissues

Overall hypothesis

> The postpartum protein deficiency limits performance

> Production and metabolic stress

DEPARTMENT OF ANIMAL SCIENCE AARHUS UNIVERSITY

2 METABOLIC EXPERIMENTS

- 1 IN FOULUM- 1 IN CANADA

ABOMASAL INFUSION OF PROTEIN

INFUSION OF PROTEIN OR WATER Foulum exp., 4 cows Canadian exp., 5 cows

"CLOSE THE GAP" STRATEGY

MILK YIELD: +7 TO +8 KG/D

Foulum exp.

Canadian exp.

FEED INTAKE

Foulum exp.

Dry matter intake

Canadian exp.

HIGH MARGINAL UTILISATION OF ADDITIONAL PROTEIN

Foulum exp.

Canadian exp.

ENHANCED PROTEIN STATUS

Foulum exp.

Canadian exp.

GREATER SYNTHESIS OF ALBUMIN

Days relative to calving

Albumin fractional synthesis rate

STABILISED IMMUNE RESPONSE

PROLIFERATION OF RUMEN PAPILLAE

Fractional synthesis rate of protein in rumen papillae

> Supported by mRNA expression data

ANIMAL MODEL – CANADIAN EXP.

METABOLISM OF ESSENTIAL AA

>Based on established lactations

- >Group 1 = His+Met+Phe+Tyr+Trp
- > 1:1 mammary uptake to release in milk
- > Typically net liver uptake
- >Group 2 = Ile+Leu+Val+Lys
- > Excess mammary uptake to release in milk
- > Little to no net liver uptake

USE OF THE ADDITIONAL AA GROUP 1 = HIS+MET+PHE+TYR+TRP

Group 1 essential AA

USE OF THE ADDITIONAL AA GROUP 2 = ILE+LEU+VAL+LYS

Group 2 essential AA

NO INCREASE IN LIVER GLUCOSE RELEASE

True liver release of glucose

Days relative to calving

CATABOLISM OF AMINO ACIDS

Canadian exp.

FAT MOBILISATION

Foulum exp.

Canadian exp.

PRODUCTION TRIAL

AUTOMATIC MILKING SYSTEM AND INSENTEC FEEDING GATES

106 HOLSTEINS + 43 JERSEYS RANDOMISED BLOCK DESIGN

to avoid specific ingredient effects

MOGENS LARSEN

24

PROTEIN SOURCES

g/kg DM	Soybean meal	SoyPass	Rape meal	RaPass	Sunflower meal	Corn glut. 60%	Potato- protein
CP	528	490	389	336	417	682	820
NDF	102	224	270	237	280	33	65
EPN, %	(55)	(~30)	(65)	(20)	(74)	(23)	(~40)
AAT (MP)	228	275	145	187	130	443	382
PBV	239	122	180	56	235	121	364
		1				$\mathbf{\uparrow}$	1

GREATER MILK YIELD IN MULTIPAROUS HOLSTEIN COWS

MOGENS LARSEN

SAME EFFECT IN JERSEYS

CONCLUSIONS

CONCLUSION

> Protein appears more limiting than glucose
 > Window of opportunity in the first days after calving

> Biologic potential for greater production

- > Along with stabilised maternal body functions
- > Carry-over effect on production?
- > How long and how much?
- > Protein effect or a selection of essential AA?

> Not associated with greater feed intake

>>> increased fat mobilisation – a problem?
>>> where does the nutrients come from?

>>> should glucose supply be increased?

CURRENT ACTIVITIES

- >Adisseo got EU TransNational Access (SmartCow) funding for a project to be run at Aarhus University
- > Transition cow study
- > Abomasal infusion of total AA or essential AA only
- > Milk yield, feed intake, and mammary uptake of nutrients
- >First step in refining the AA requirement in the postpartum period

THANK YOU FOR THE ATTENTION

FUNDING DANISH COUNCIL FOR INDEPENDENT RESEARCH THE DANISH AGRI-FISH AGENCY DANISH MILK LEVY FUND CANADIAN CANOLA COUNCIL

