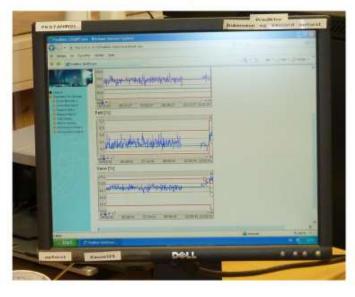
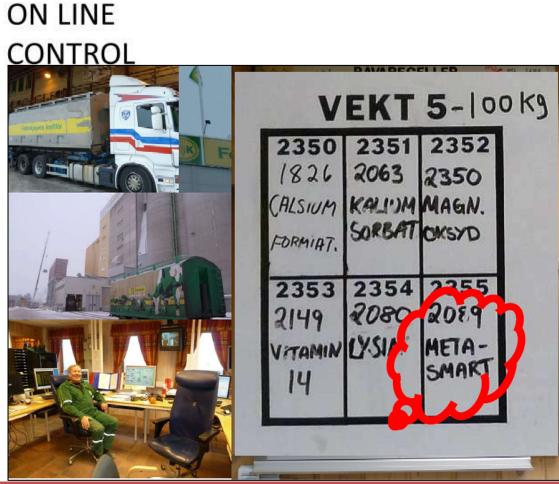
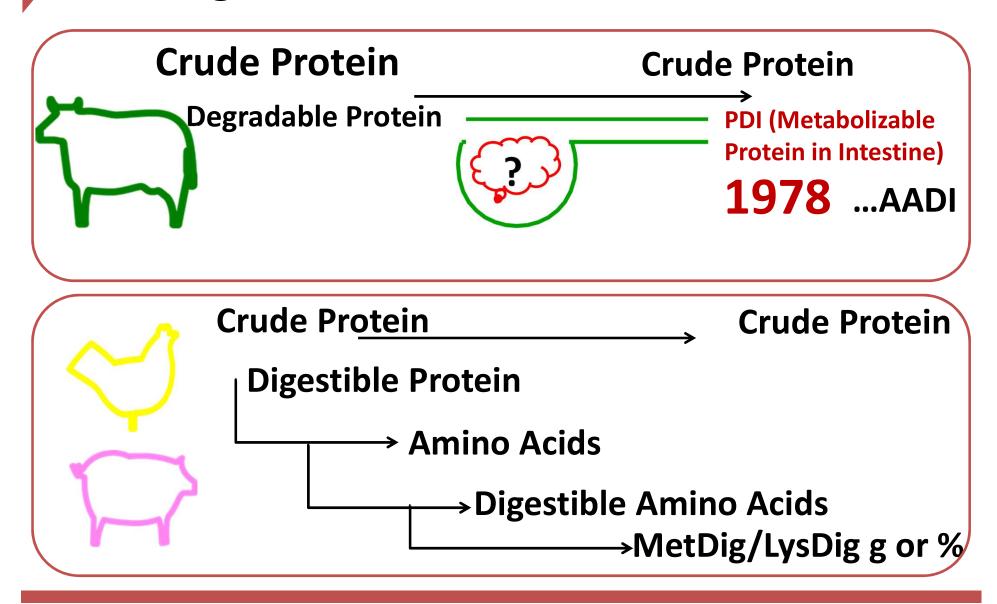
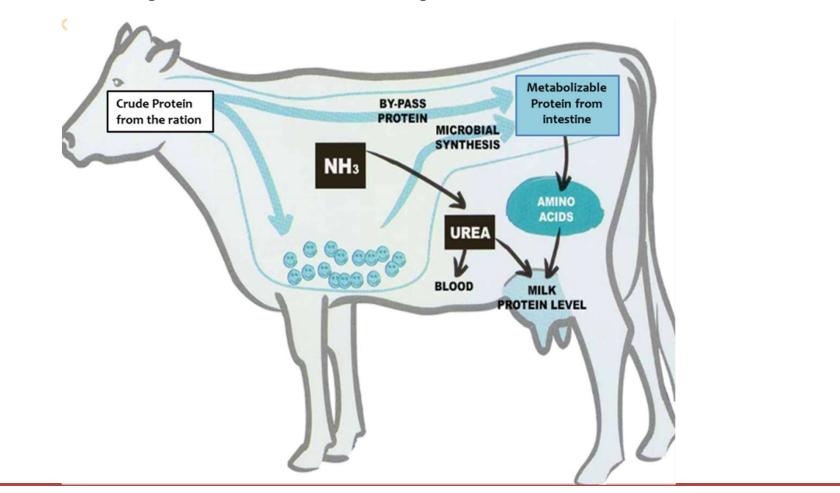

Moving from Metabolizable Protein to Amino Acids for Dairy Cows Nutrition


Laurent THIAUCOURT – ex General Manager Lorial (Feed & Nutrition supplier – France) Consultant for ADISSEO





Why did I look deeper at amino acids in dairy cows ? Felleskjøpet Stange 08/12/2010



Protein Nutrition : ruminants models vs monogastric models

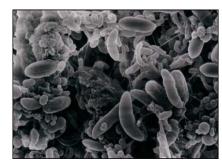
What does the mammary gland use to produce milk protein ?

Mammary gland uses amino acids

Dairy cow's protein nutrition

Promoting rumen microbes growth (microbial protein synthesis) Supplying by-pass Amino Acids (digestible, directly to the intestine)

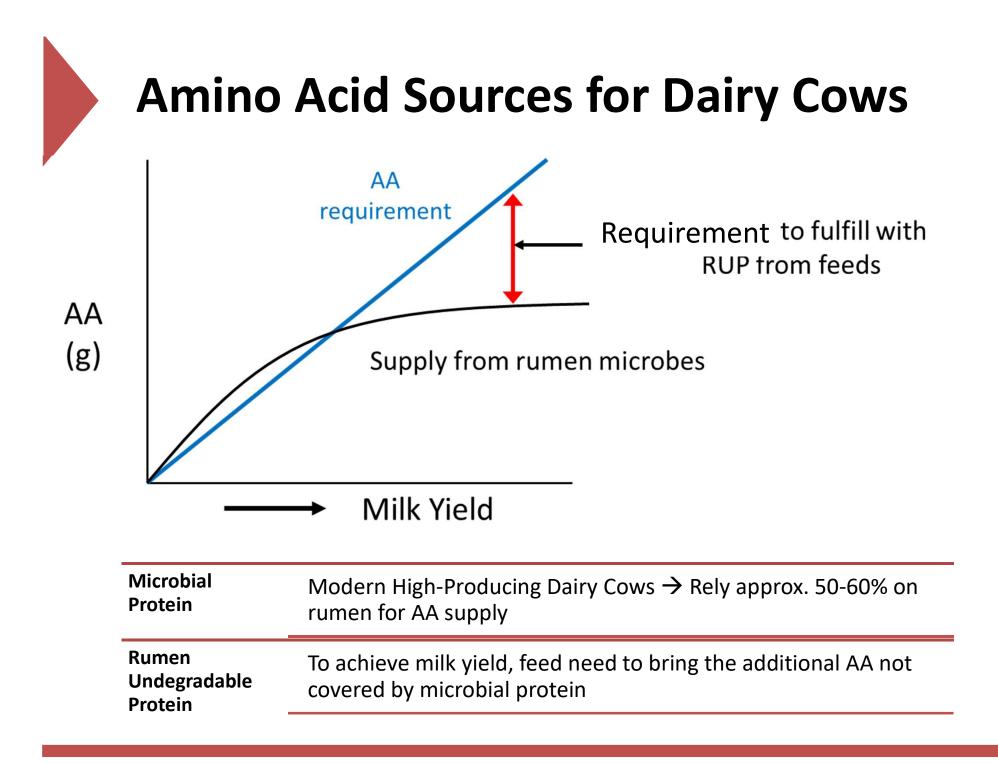
Rumen Degradable Protein


Rumen microorganisms have RDP requirements

• Purpose is to meet the ammonia & others non protein nitrogen required by rumen microbes for maximum carbohydrate digestion

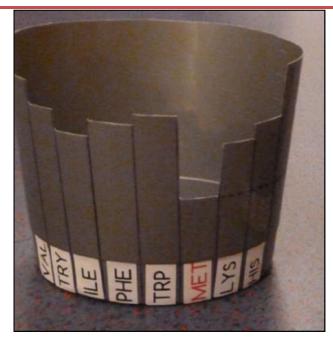
Rumen Undegradable Protein

Animals have Amino Acids requirements


• Purpose is to provide directly to the intestine the additional Amino Acids that the Animal require that are not provided by microbial protein

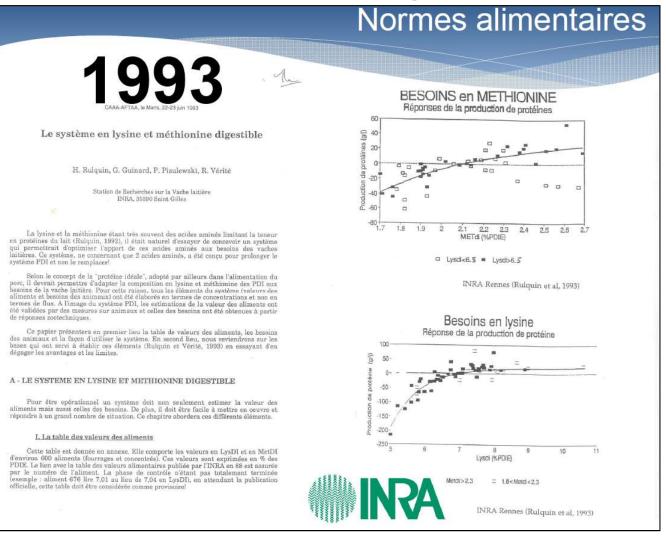
Amino Acids in dairy cows ration Why are Met and Lys Limiting?

The combined contribution of Microbes (Microbial Protein) and Feed (Bypass Protein) is less than Milk composition

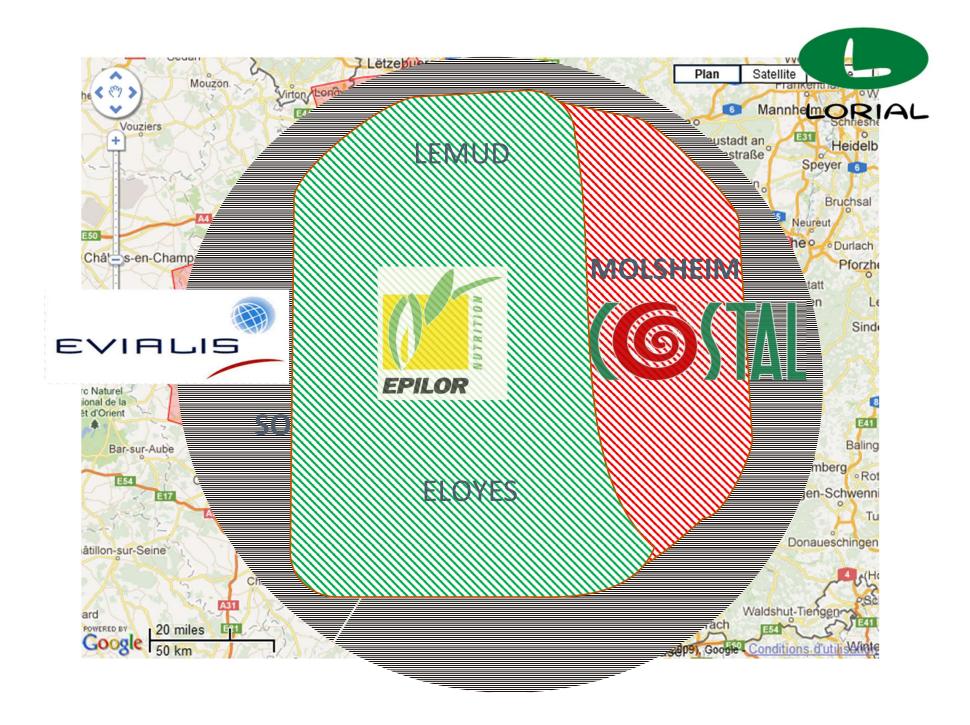

	Met (% CP)	Lys (% CP)
Milk	3.0	7.9
Microbes	2.8	8.0
Forages	1.3-1.6	2.8-4.7
Grains	1.5-2.0	2.8-3.6
Plant Proteins	1.3-2.0	2.8-6.1
Fiber By-products	1.0-1.5	4.0-6.3

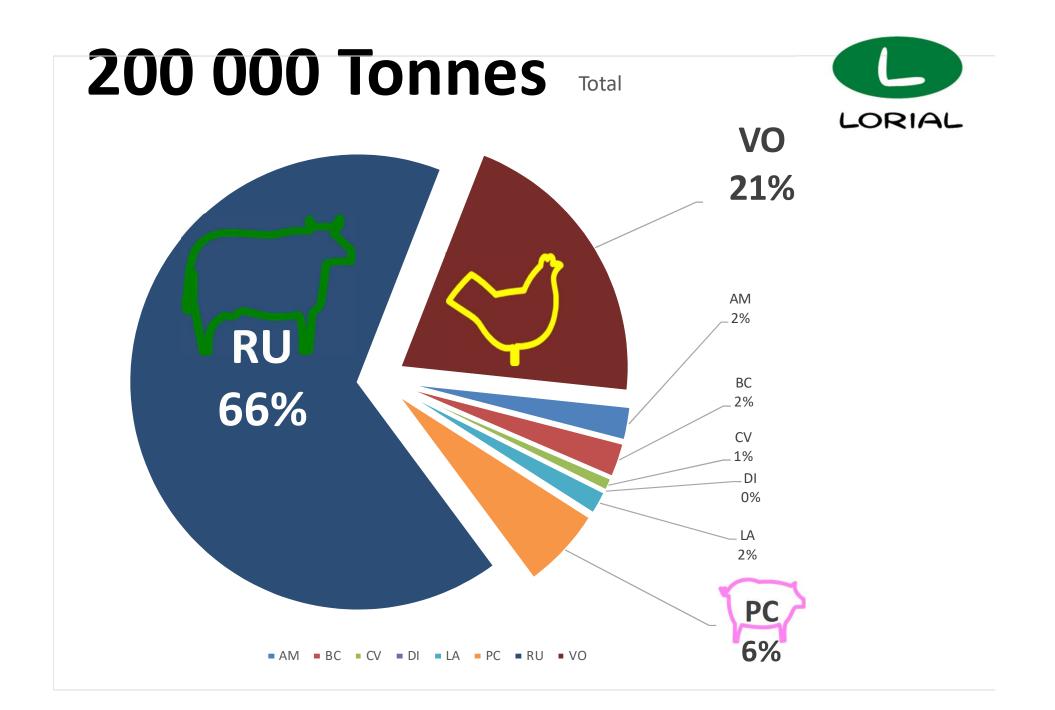
Amino Acids in dairy cows ration Why are Met and Lys Limiting?

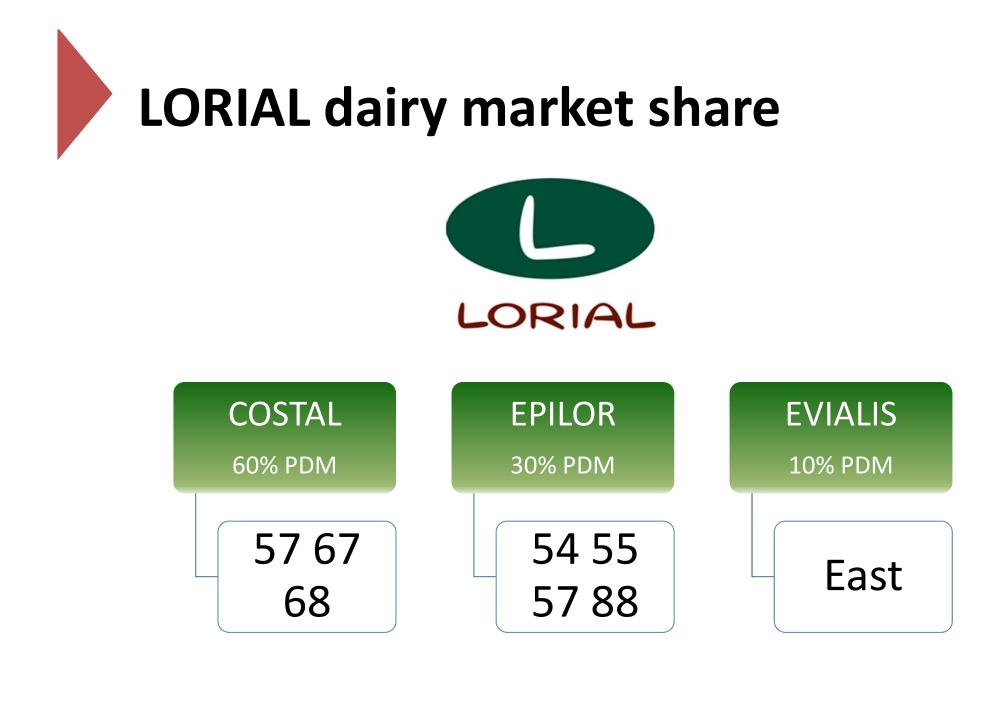
The combined contribution of Microbes (Microbial Protein) and Feed (Bypass Protein) is less than Milk composition

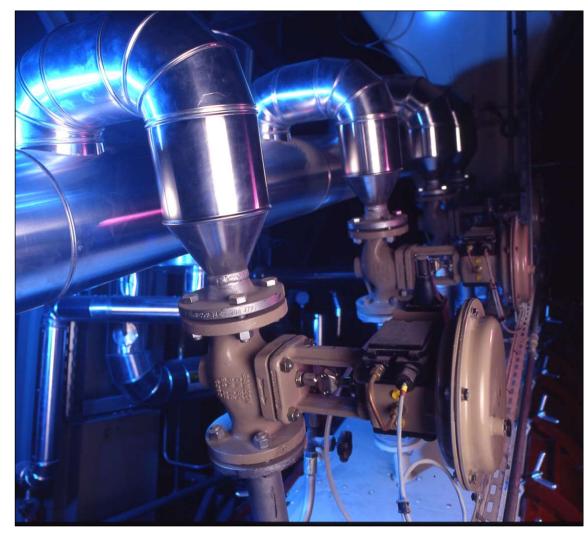

This means we <u>overfeed</u> most AA to meet Met and Lys

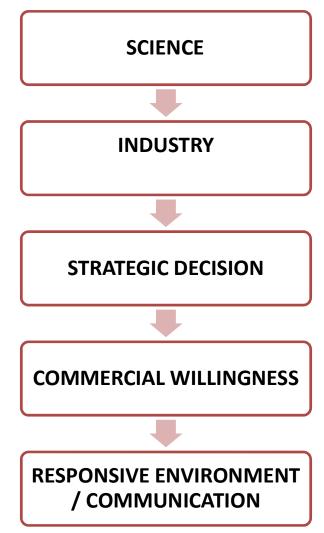
<u>underfeed</u> Met and Lys compared to the requirement (ideal profil)



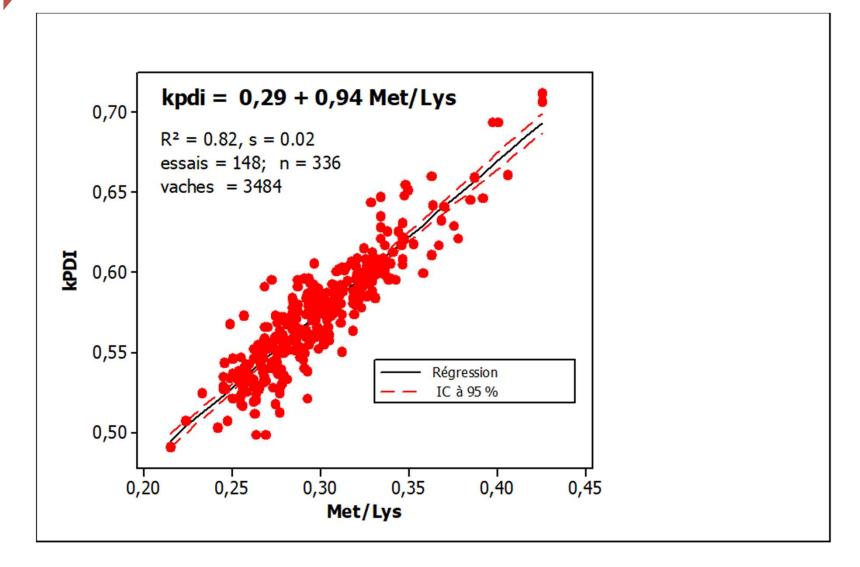

Research evaluated requirements for most limiting AA







Implementing new commercial strategy depends on...



How can we apply AA nutrition ? Does it work in field ?

1. Academic evaluation of dairy cows AA ration in commercial herds

2. Implementation & Results in Lorial's herds

LysDi/ MetDi ratio

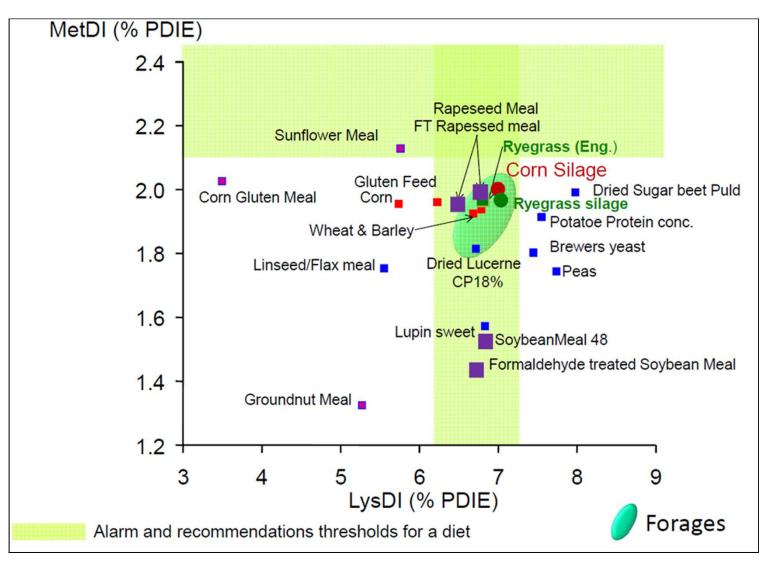
LysDi/ MetDi ratio

	Témoin	+ 6g MetDI
LysDI, g/j (%)	142 (6.84)	142 (6.80)
MetDI, g/j (%)	38 (1.83)	44 (2.11)
MetDI/LysDI	0.268	0.310
Δ kPDI	0.94 *(.310	268) = 0.0397
PDIprod, g/j	1085/0.64	1085/(0.64+0.0397)
(MP/kPDI)	= 1695	= 1596
∆PDI, g/j	(1596-1695)	= - 99 (5.8%)

Amino Acid Digestible in the Intestine AADI

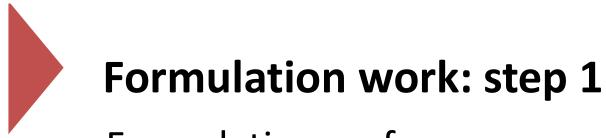
Tools for amino acids formulation

AADI are nutrients used for their nutritional value as other to meet animal requirements


Need to validate AA concentration
main AA
(Lys Met His) AADI value
characteristics

Rumen Protected Amino Acids (RP-AA)

Tools for amino acids formulation	RP-AA are ingredients nutritional value as o meet animal requirer	ther raw material to
	Need to validate main characteristics	Rumen Protection (target low rumen degradation)


main characteristics -	Intestinal Digestibility (target high absorption in intestine)
Not all RP-AA perform the same	Did our own test in robotic farms
perform the same	Validated MetaSmart source & rejected some others

Analysis provide inputs for concentrate & ration formulation

Analysis provide inputs for concentrate & ration formulation

- Formulation of our typical dairy diets (commercial on farm software)
- MetDI and LysDI evaluation of our main commercial feed (feedmill software)
- Reformulation of our products with a specific attention to AADI content (similar feed quantity/cow/d)
- Test period with 20 herds
- Commercial launch

• Formulation on farm

ation Edit	Display	Tools												
New wir	dow 👫	n	- •	6	3	10	1	ø	1	1	- 6	i (1)	2 関	
ition		DEM	0			r								
lilk producti	on -Target		39,300	kg					Spec RM	Th.	_			
Allowed pro	duction		32,168	kg		(0.000		D.M.	1 2)			
Cost / Prod.			112.0	€/1000 L	\vdash		0.0		As Fed					
ation cost		-	3.7	€/d	-		0.0			1				
Ration cost			65.5	€/Tonne	-		0.0			1				
ation cost	Tonne	1	00.0	eronne	1		0.0			2-1				
argin / Pro		—	228.0	€/1000_L			0.0							
			7.6	€/d	1		0.0							
largin - Rat	ion	-	1.0	€/d	<u>!</u>		0.0							
Code			Raw	material					Qty	DM. qty	D.M.	Min.	Max.	A_
FV0260	fresh forage	s,Moun	tains,First g	rowth,RP(12	7),NE	(0.7)			16.667	3.000	Г			
FE4730	Whole plant of	corn, N	ormal condit	ions of grow	th,Flin	t,RP(7	1),NE(0.82	30.000	12.000	Γ			
									46.667	15.000	Γ			
CC0010	Barley								0.496	0.430	Г			
CF0170	Beet pulp, de	hydrat	ed						0.483	0.430				
MC0010	Calcium prod	ucts, G	round limes	tone					0.105	0.100	Γ			
CD0030	Lucerne 17-1	18% CF	0						3.135	2.840	Γ			
CC0060	Maize								0.498	0.430				
CF0130	Molasses, be	eet							0.092	0.070	Γ			
CX0040	Rape seed m	eal							2.500	2.217				
CX0140	Soybean me	al (48)							1.500	1.317				
CG0060	Soybean oil	ean oil							0.300	0.300				
CS0060	Wheat bran								0.356	0.310				
CC0040	Wheat, durur	n							0.491	0.430				
									9.955	8.874				
									56.622	23.874	And and a design of the local division of th		ALC: NOT THE OWNER OF	

Formulation work: step 1

• Formulation on farm

ation(LT, ration type A_11) DEMO- on <u>E</u> dit <u>D</u> isplay <u>T</u> ools																					
	for an I																				
New window 🧏 🗠 🖶 🗈 😨 🎒 🗟 🕵 📧 🎉 🗱	1		•				Herd p	arame	ters Selling price	1.											
n DEMO 😭																					
production -Target 39,300 kg	Spec RM		_				Madal	Denti		1 Protes		1 10 10 10 10									
wed production 32.168 kg 0.000	D.M.		L I				Model	Requi	ements Specification	Post Ca	alculation	Indicat									
st/Prod. ▼ 112.0 €/1000_L 0.0	As Fed						50									_			50		
ion cost / d 3.7 €/d 0.0		i i i i i i i i i i i i i i i i i i i					50												50		
ion cost / Tonne 65.5 €/Tonne 0.0		14									1		JI				1.0	-			
		201					45	+				>	-5-5					-+	45		
rgin / Prod. 228.0 €/1000_L 0.0		8																			
							40	<u> </u>											40		
rgin - Ration 7.6 €/d 0.0											-		1						- L	AIT Target	
Darda Davu metariat	Oh	DH at a				A.														resh forages,Mou	
Code Raw material	Qty	DM. qty	D.M.	Min.	Max.	-	35				-				~				35 🔳 V	Vhole plant corn, N	£.
FV0260 fresh forages, Mountains, First growth, RP(127), NE(0.7)	16.667	3.000																	B	arley	
FE4730 Whole plant corn, Normal conditions of growth, Flint, RP(71), NE(0.82	30.000		Γ				30	+			-		-	-		-		-+	30 📕 B	leet pulp, dehydrat	ŧ
	46.667		-																	alcium products,	
CC0010 Barley	0.496						25													ucerne 17-18% C	
CF0170 Beet pulp, dehydrated	0.483						20													laize	
MC0010 Calcium products, Ground limestone	0.105																			Iolasses, beet	
CD0030 Lucerne 17-18% CP	3.135						20				-							-+	20 -		
CC0060 Maize	0.498										1									ape seed meal	
CF0130 Molasses, beet	0.092						15												15	oybean meal (48)	
CX0040 Rape seed meal	2.500						10												5	oybean oil	
CX0140 Soybean meal (48)	1.500																		V	Vheat bran	
CG0060 Soybean oil	0.300						10	+			-		-				+		10 🚺 V	Vheat, durum	
CS0060 Wheat bran	0.356																				
CC0040 Wheat, durum	0.491						5						_						5		
	9.955					_															
	56.622																				
Code Rejected	Qty	DM. qty	D.M.	Min.	Max.	A	0	+	UFL PDI		PDIE		LysDI (g)	Mat	DI (g)	Ca abs	Pai	he	0		
FE3840 Cocksfoot, First growth,RP(117),NE(0.68)				-	-				FUI		FUIL		Lyabi (g)	MC	(9)	00 000	rai				
FV0020 fresh forages,Lowlands (Normandy), First growth,RP(172),NE(0.9																					
FV0090 fresh forages,Lowlands (Normandy), Reg. aft. earl. graz.,RP(105)			-	-				Code	Nutrient	Unit	Prod.	Value	Min.	Max.	MinModel	MaxModel	Constr. Cost	From	То		
FV2100 fresh forages,Lucerne, First growth, vegetative,RP(225),NE(0.82) FE1530 Ita, Rvegrass (n.alt., First growth,RP(98),NE(0.75)						-	UF	L	UFL	UF	36.79	22.14	23.23		23.23						
FE1530 Ita. Ryegrass (n.alt., First growth,RP(98),NE(0.75) FE4860 Lucerne, 2nd G.(1st cut:budd.),RP(187),NE(0.67)							PD		PDIN	9	40.45	2 328.32	2 274.56		2 274.56						
FE2620 Perennial ryegrass, 2nd growth ,RP(167),NE(0.07)			H					-14		-	40.45	2 222 2	2 274.56		2 274.56						
FP0020 Straws stovers, husks, Wheat Alone			Ē				PD	IE	PDIE	g	39.33	2 276.01	159.22		159.22						
Code Rejected	Qty	DM. gty	D.M.	Mie	Max.		Ly	sDI	LysDI	g	39.13	158.67	50.04		50.04						
CF0050 Alfalfa protein concentrate	uty	Um. qty	D.m.	Termi,	max.	ŕ		tDi	MetDi	q	32.17		-		67.17						
CS0220 Barley rootlets			F			-				3			50.50		52.58			<u> </u>			
CF0110 Brewers' yeast, dehydrated			Ē					aus		Ia	35.42	07.52	52.00		52.30	-					
MT0010 Buffers, Magnesium oxide			Ē				0	Code	Nutrient	Unit	Va	alue	Min.	Max.	MinModel	MaxModel	Constr. Cos	t From	То		
								-			1	1000						-		1	
MT0020 Buffers, Sodium bicarbonate				_	1 _		MS	÷	Dry Matter	kg		23.87	22.52	26.2	22.52	26.27					

Formulation work : step 2

• Feed Concentrate

Mix											
🕅 Insert this	s composition 🛛 📮 Save composition 🛛 🚔 Print	Preview Pri	nt out list ST	🔹 🖓 Lai	el 🕶						
w material	MEL LT	Mix demo									
Code	Raw material	Body weight	%	DM. qty		Code	Nutrient	DM value	Value	Unit	
CF0170	Beet pulp, dehydrated	0.483	9.044	0.430		dADF	dADF			%	
MC0010	Calcium products, Ground limestone	0.105	1.973	0.100		dNDF	dNDF			%	
CF0130	Molasses, beet	0.092	1.733	0.070		BACA	DCAD	97.435	86.630	mEq/kg	
CX0040	Rape seed meal	2.500	46.849	2.217		BE	BE	398.503	354.312	mEq/kg	
CX0140	Soybean meal (48)	1.500	28.110	1.317		His Di/PDIE	His Di/PDIE	2.151		% PDIE	
CG0060	Soybean oil	0.300	5.622	0.300		Arg Di/PDIE	Arg Di/PDIE	4.800		% PDIE	
C \$0060	Wheat bran	0.356	6.670	0.310		His Di	His Di	3.818	3.394	g/kg	
	Total	5.336	100.000	4.745		Thr Di/PDIE	Thr Di/PDIE	4.561		% PDIE	
						Arg Di	Arg Di	8.621	7.665	g/kg	
						Thr Di	Thr Di	7.963	7.080	g/kg	
						Val Di/PDIE	Val Di/PDIE	5.203		% PDIE	
						Val Di	Val Di	9.069	8.064	g/kg	
						Ile Di/PDIE	Ile Di/PDIE	4.693		% PDIE	
						Leu Di/PDIE	Leu Di/PDIE	7.455		% PDIE	
						lle Di	lle Di	8.282	7.364	g/kg	
						Phe Di/PDIE	Phe Di/PDIE	4.426		% PDIE	
						Leu Di	Leu Di	13.202	11.738	g/kg	
						Asp Di/PDIE	Asp Di/PDIE	9.412		% PDIE	
						Phe Di	Phe Di	7.892	7.017	g/kg	
						Ser Di/PDIE	Ser Di/PDIE	4.463		% PDIE	
						Asp Di	Asp Di	16.885	15.013	g/kg	
						Glu Di/PDIE	Glu Di/PDIE	13.943		% PDIE	
						Ser Di	Ser Di	7.917	7.039	g/kg	
						Pro Di/PDIE	Pro Di/PDIE	4.523		% PDIE	
						Glu Di	Glu Di	24.884	22.124	g/kg	
						Gly Di/PDIE	Gly Di/PDIE	5.457		% PDIE	
						Pro Di	Pro Di	7.951	7.069	a/ka	

Formulation work : step 3 the theory

DOW		A	10.45	2 220 22
PDIE	PDIE	9	39.33	2 276.01
LysDI	LysDI	g	· 39.13	158.67
MetDi	MetDi	g	32.17	42.70
State of the local division of the local div	Children and the second			

5,36 kg complement feed/d

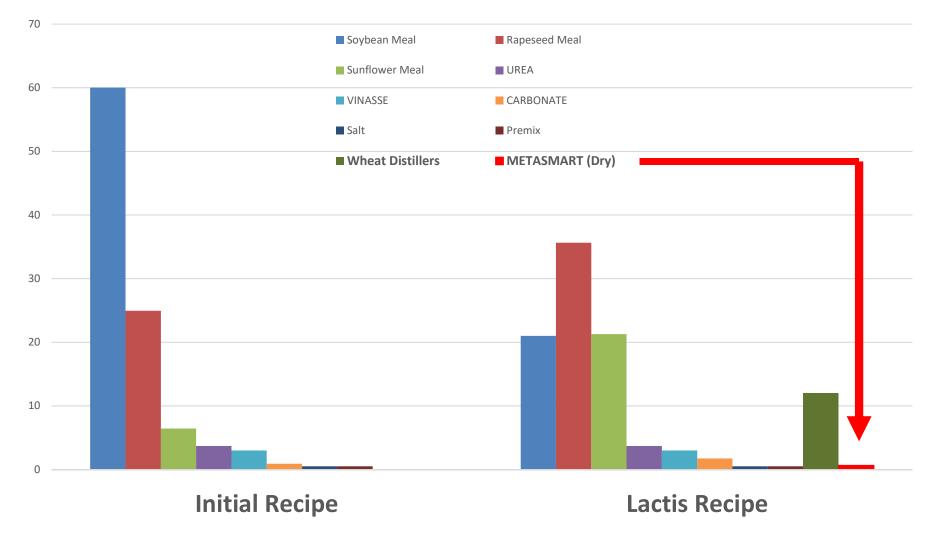
Caraba Ica alus	0 35.42 01.52		
	g	%	g
LysDI	158.67	6.97	155
MetDI	42.7	1.88	50
MetDI/LysDI	0.269		0.323
kPDI	0.543		0.593
PDI	2 276		2 083

MP totales 1236 1236 193/5,36 = 36 g/kg less PDI in feed 4/5,36 = 0.75 g/kg less LysDI in feed 7.3/5,36 = 1.36 g/kg more MetDI in feed

0.367 % of Metasmart liquid

Formulation work : step 4 the theory

Nutrient	Unit	Old Value	delta
Dry Matter	kg	0.889	
UFL	UF	0.998	
PDIN	g/kg	208.368	-36
PDIE	g/kg	143.841	-36
PDIA	g	97.921	-36
Ca abs	g	5.734	0
P abs	g	5.609	 0
LysDI	g/kg	9.927	-0.75
MetDi	g/kg	2.568	1.36
His Di	g/kg	3.394	0
Dig Starch	g/kg	1 252.78	 0
Crude Prot.	%	34.23	, , ,


LORIAL

	Initial recipe
Degr. Prot. (g/kg)	276
MetDi et LysDi (g/kg)	3,9 – 15,8
% Soja	60%
constraint soja cost	1,15
% CP	47,0%
constraint CP cost	0
Recipe cost	/

	Initial recipe	Initial+ Soja « free »	LACTIS + Soja 30 mini + free CP
Degr. Prot. (g/kg)	276	277	266
MetDi et LysDi (g/kg)	3,9 – 15,8	4,0 – 15,5	5,0 – 13,8
% Soja	60%	48%	30%
constraint soja cost	1,15	0	1,1
% СР	47,0%	47,0%	43,8%
constraint CP cost	0	14.7	0
Recipe cost	1	-15,9	-27,9

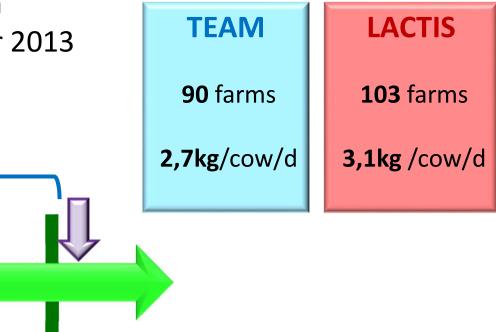
	Formule initiale	Initial+ Soja « free »	LACTIS + Soja 30 mini + free CP	LACTIS + MP free
Degr. Prot. (g/kg)	276	277	266	265
MetDi et LysDi (g/kg)	3,9 – 15,8	4,0 – 15,5	5,0 – 13,8	5,0 – 13,4
% Soja	60%	48%	30%	21%
constraint soja cost	1,15	0	1,1	0
% СР	47,0%	47,0%	43,8%	43,1%
constraint CP cost	0	14.7	0	0
Recipe cost	/	-15,9	-27,9	-39,6

With a formulation based only on animal requirements the economy is up to 30€/t.

Concentrate formulation with/without AA Lorial survey

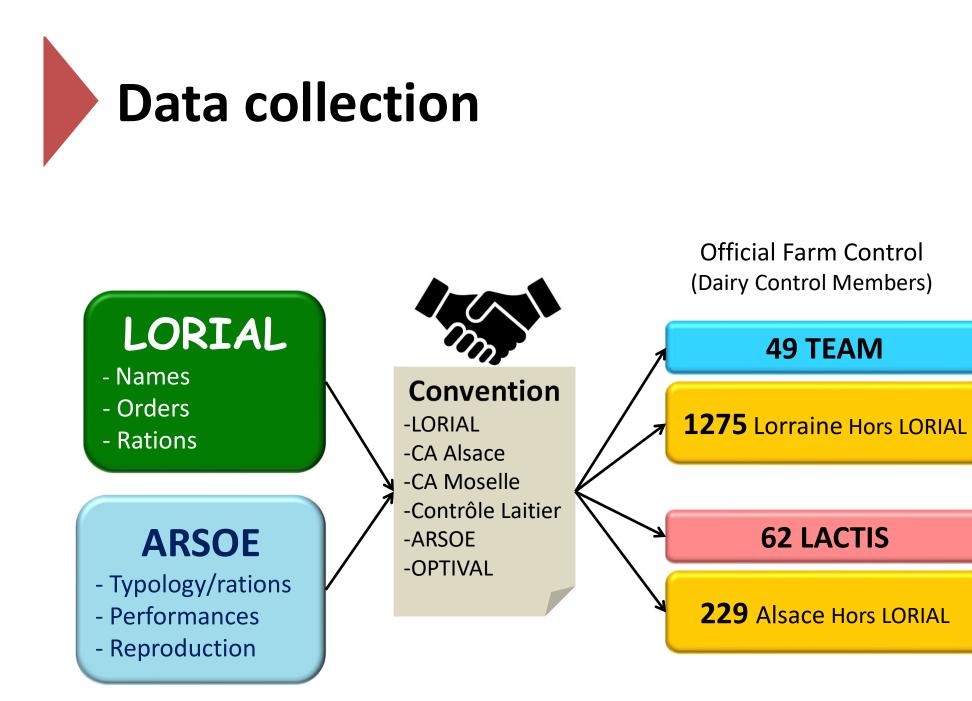
LORIAL

How can we apply AA nutrition ? Does it work in field ?


- 1. Academic evaluation of dairy cows AA ration in commercial herds
- 2. Implementation & Results in Lorial's herds

Zootechnical results in commercial herds

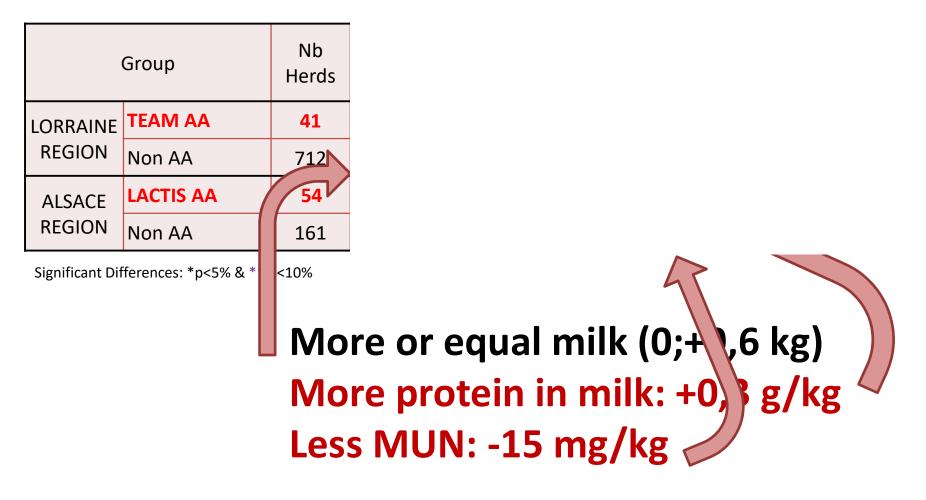
- After 2 years of commercial sales
- A study based on all the regional dairy records
- Comparing year long users and all the others non customers


Average order evaluation

November 2013

(at least)

November 2012 (first order or continuous orders)



Zootechnical results in 95 herds

970 farms, 55 000 Dairy cows, 600 000 records

Zootechnical results in 95 herds

970 farms, 55 000 Dairy cows, 600 000 records

Zootechnical results

• Comparing among LORIAL customers Crude Protein level of the ration was decreased by 0.5 point compared to traditional formulation

	Ration Protein content (kg)	Milk Protein content (kg)	N efficiency (%)
TEAM AA	2,91	0,93	32
Non AA	3,03	0,90	29,7
	1		
	Ration Protein content (kg)	Milk Protein content (kg)	N efficiency (%)
LACTIS AA			-

• N efficiency is improved

For 100 cows :

653kg to 891 kg Nitrogen not released in the environment

Economical approach for a traditional dairy farm

%Protein benefit Extra milk benefit	inancial Impact
-------------------------------------	--------------------

2 500 to 9 000 €/year.

Validation de l'efficacité de la formulation en Acides Aminés Digestibles dans l'Intestin de rations pour vaches laitières en Alsace-Lorraine Validation of the efficiency of a dairy diet formulated on digestible amino-acids in Alsace-Lorraine

Renc. Rech. Ruminants, 2015, 22

THIAUCOURT L. (1), IMBS D. (2) (1) LORIAL, 6 rue du Bois de la Champelle, F-54500 Vandoeuvre les Nancy, France (2) LORIAL site COSTAL, 5 rue du Gibier, F-67120 Molsheim, France

INTRODUCTION

Depuis juillet 2011, LORIAL, fabricant d'aliment du bétail de l'Est de la France met en œuvre une technique de calcul des rations Vaches Laitières formulées en acides aminés digestibles dans l'intestin (AADI). La base des argumentaires des gammes LACTIS en Alsace (départements 67 et 68) et TEAM en Lorraine (départements 54, 55, 57,88) repose sur une offre simple : ne pas changer la pratique en élevage mais substituer la même quantité du correcteur initial par son équivalent reformulé sur la base des apports en Méthionine, Lysine et Histidine. Les valeurs retenues sont issues des travaux INRA, intégrées dans les matrices des firmes service et aménagées par LORIAL : le correcteur standard a vu sa teneur en azote perdre de 3 à 6 points pour conserver des apports en LysDI et MetDI au moins équivalents. Au total plus de 400 élevages sont aujourd'hui utilisateurs de ces gammes.

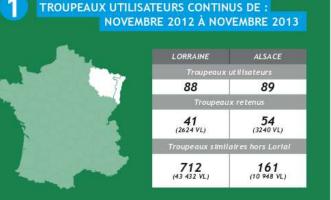
Les freins rencontrés dans le développement de ces gammes ont été de nature commerciale.

d'urée par litre de lait) vis-à-vis des élevages Hors LORIAL. LACTIS et TEAM ne présentent pas de différence significative au niveau du TB vis-à-vis des élevages Hors LORIAL.

Au niveau de la productivité, LACTIS présente un niveau d'étable significativement plus élevé et une tendance supérieure pour le lait MTCLN et le lait par lactation par jour.

Tableau 1 : Résultats de production laitière
--

élevage	nb	Niveau étable (kg)	TB (g/kg)	TP (g/kg)	Cellules (10 ³ /kg)	Urée lait (g/kg)
LACTIS	54	9806	40,08	32,45	264	0,215
AHL	161	9469	40,16	32,18	290	0,227
P		<0,05	NS	<0,05	NS	<0,05
TEAM	41	8888	40,01	32,27	315	0,254
LHL	712	8954	39,89	31,99	288	0,269
P		NS	NS	<0,05	NS	<0,05


Ban abhailte de l'entre ante en des l'eferres abhailteathre des

VALIDATION DE L'EFFICACITÉ DE LA FORMULATION EN ACIDES AMINÉS DIGESTIBLES DANS L'INTESTIN DE RATIONS POUR VACHES LAITIÈRES EN ALSACE-LORRAINE

Laurent Thiaucourt

THIAUCOURT L. (1), IMBS D. (2) / (1) LORIAL, 6 rue du Bois de la Champelle, F-54500 Vandoeuvre les Nancy, France / (2) LORIAL site COSTAL, 5 rue du Gibier,F-67120 Molsheim, France

INTRODUCTION : Depuis juillet 2011, LORIAL, fabricant d'aliment du bétail de l'Est de la France met en œuvre une technique de calcul des rations Vaches Laitières formulées en acides aminés digestibles dans l'intestin (AADI). La base des argumentaires des gammes LACTIS en Alsace (départements 67 et 68) et TEAM en Lorraine (départements 54, 55, 57,88) repose sur une offre simple : ne pas changer la pratique en élevage mais substituer la même quantité du correcteur initial par son équivalent reformulé sur la base des apports en Méthionine et Lysine. Les valeurs retenues sont issues des travaux de Rulquin (1992). intégrées dans les matrices des firmes service et revues par LORIAL : le correcteur a ainsi vu sa teneur en azote perdre de 3 à 6 points pour conserver des apports en LysDI et MetDI au moins équivalents. Au total plus de 400 élevages sont aujourd'hui utilisateurs de ces gammes.

7 TABLEAU COMPARATIF DES ÉLEVAGES

ALSACE	nb	Éff. moyen total	Eff. moyen trait	Rang moyen lact.	% primi- pare	Mois moyen	Robot traite (%)	TP géné- tique	TB géné- tique	Lait géné- tique	INEL
LACTIS	54	70	60	2,3	35	6,7	4	0,0	-0,2	238	8,5
AHL	161	69	56	2,3	35	6,7	3	-0,1	-0,2	190	6,1
Р		NS	NS	NS	NS	NS	NS	NS	NS	< 0,05	<0,05
LORRAINE		Eff. moyen total	Eff. moyen trait	Rang moyen lact.	% primi- pare	Mois moyen	Robot traite (%)	TP géné- tique	TB géné- tique	Lait géné- tique	INEL
TEAM	41	64	56	2,3	36	6,6	7	0,0	-0,1	165	6,5
TEAW								0.0			
LHL	712	61	53	2,4	35	6,6	4	0,0	-0,1	126	4,7

LORIAL

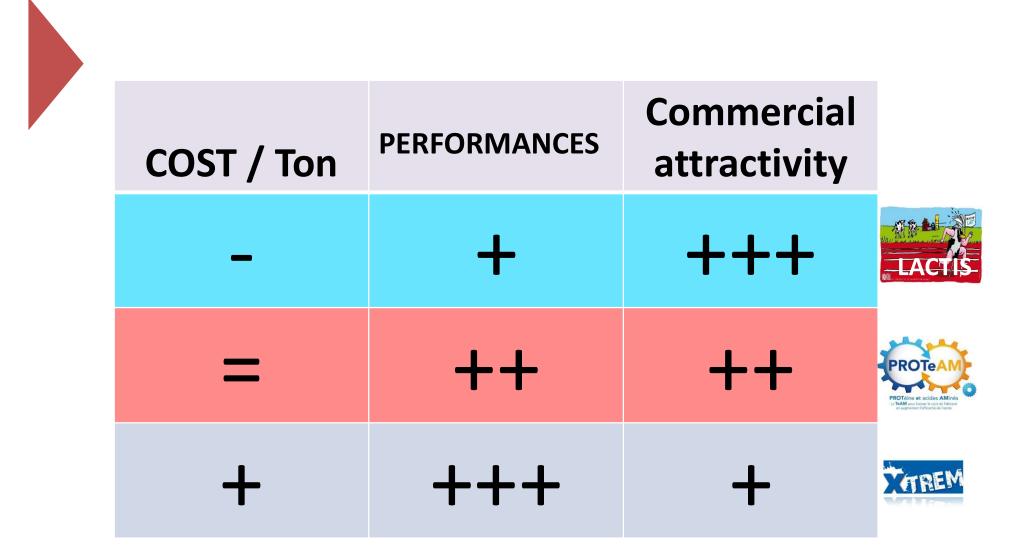
LHL : Lorraine hors Lorial

TABLEAU DE RÉSUTATS ARSOE PRODUCTION LAITIÈRE

ALSACE		Ni- veau étable (kg)	Lait brut MTCLN (kg)	Lait / lactation (kg/)	Concen- trés / kg de lait (g)	Lait Auto- nome (kg/VL)	TB (g/kg)	TP (g/kg)	Cel- lules (/1000/ kg)	Urée lait (g/kg)
LACTIS	54	9806	8772	28,8	229	6826	40,08	32,45	264	0,215
AHL	161	9469	8479	27,8	234	6428	40,16	32,18	290	0,227
Р		<0,05	<0,1	<0,1	NS	<0,05	NS	<0,05	NS	<0,05
LORRAINE	nb	Niveau étable (kg)	Lait brut MTCLN (kg)	Lait / lactation (kg/j)	Concen- trés / kg de lait (g)	Lait Auto- nome (kg/VL)	TB (g/kg)	TP (g/kg)	Cel- luies / 1000 (/ mi)	Urée lait (mg/L)
TEAM	41	8888	8009	26,3	251	6087	40,01	32,27	315	0,254
	712	8954	8156	26,7	246	6225	39,89	31,99	288	0,269
LHL	112									

LHL Lorraige hors Loria

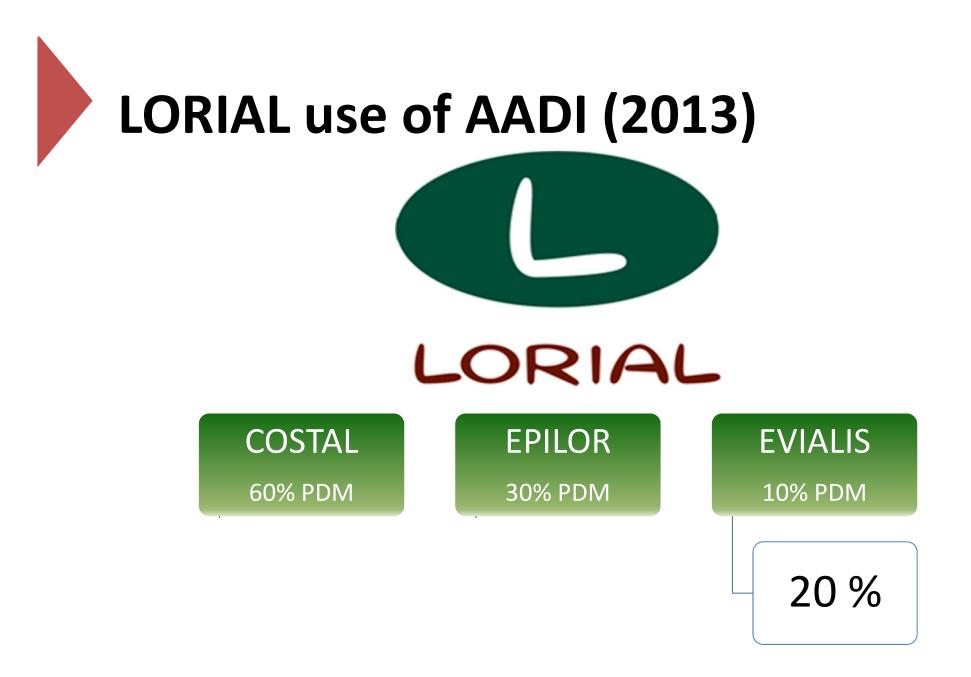
RATIONS	MAT(%)	MetDI % PDIE	Rendement de l'N(%)
Conventionnelle PDI	14,5	1,88 - 2,04	29
AADI	13,95	2,01 - 2,16	31,7


COMPARAISON DES DONNÉES ANNUELLES DE 95 TROUPEAUX NOURRIS PAR LORIAL ET DE 873 AUTRES COMPARABLES ET NOURRIS PAR LA CONCURRENCE DISCUSSION : Cette étude, conforme aux publications scientifiques récentes (Lemosquet, 2014 ; Haque et al., 2013), démontre la validité de l'approche AADI dans un environnement commercial. Les résultats sont similaires pour les gammes LACTIS et TEAM malgré des rations de base différentes, plus riches en ensilage de maïs en Alsace. Le grand nombre d'élevages impliqués dans l'étude conforte l'intérêt de calculs de rations économes en azote. L'approche économique dans le contexte de l'époque met en évidence un gain relatif de 2500 à 9000 €/an pour un élevage de 65 vaches utilisant une ration calculée en AADI par rapport aux solutions classiques des gammes LORIAL. L'amélioration de la connaissance des besoins des vaches laitières en acides aminés essentiels et les nouvelles présentations d'acides aminés protégés ont rendue possible la vulgarisation de ces techniques.

CONCLUSION: L'adoption de tels correcteurs azotés remet en cause les critères habituels d'achat basés sur la composition et la MAT. L'intérêt économique et une pédagogie de vulgarisation sont indispensables. L'économie d'azote n'est aujourd'hui pas valorisée. Il reste à diffuser cette connaissance auprès de tous les prescripteurs.

REMERCIEMENTS : Cette étude a été rendue possible grâce aux techniciens des marques COSTAL et EPILOR ayant eu la capacité à induire la mise en œuvre de ces rations dans les élevages laitiers et aux éleveurs qui leur ont fait confiance.

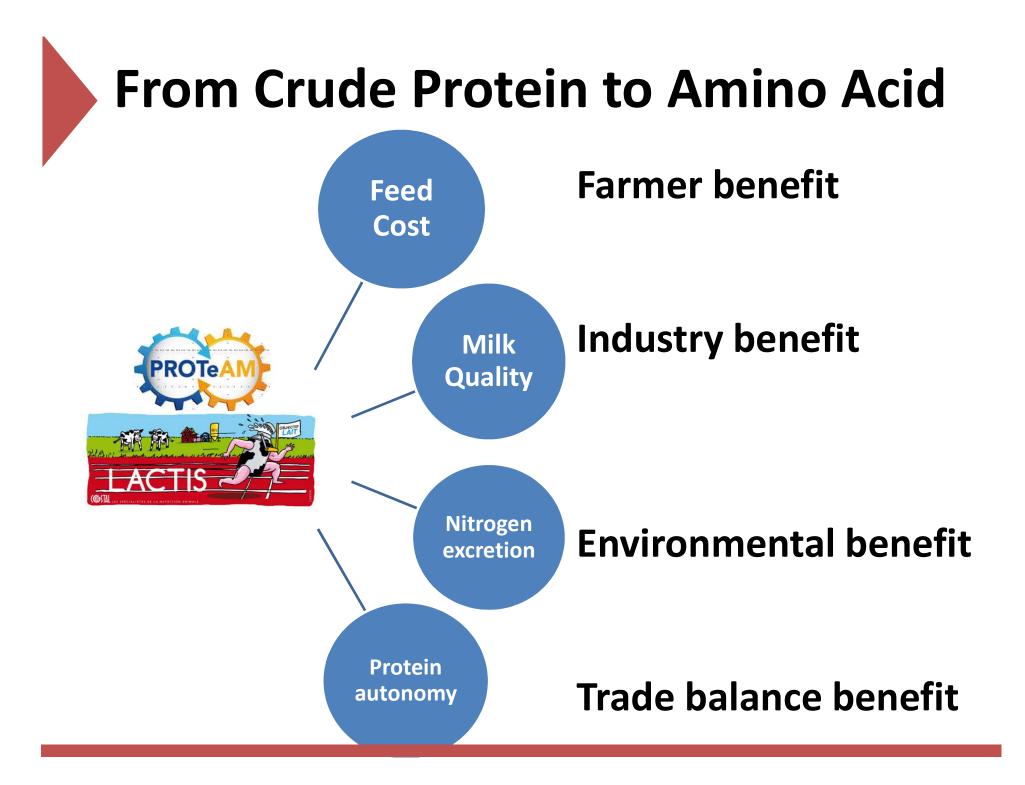
DE PERTES de protéines urinaires et fécales 2,02 kg/jour contre 2,19 kg/jour


P 9,1 % d'efficacité des PDI P 9,1 % d'efficacité des PDI P 0,1 % d'efficacité des PDI P 0,0 % d'efficacité des PDI P 0,0

LORIAL

120 000 t Ruminant feed

50% dairy protein mix 60 000 T


A good science A good feedmill A strong marketing A good strategy

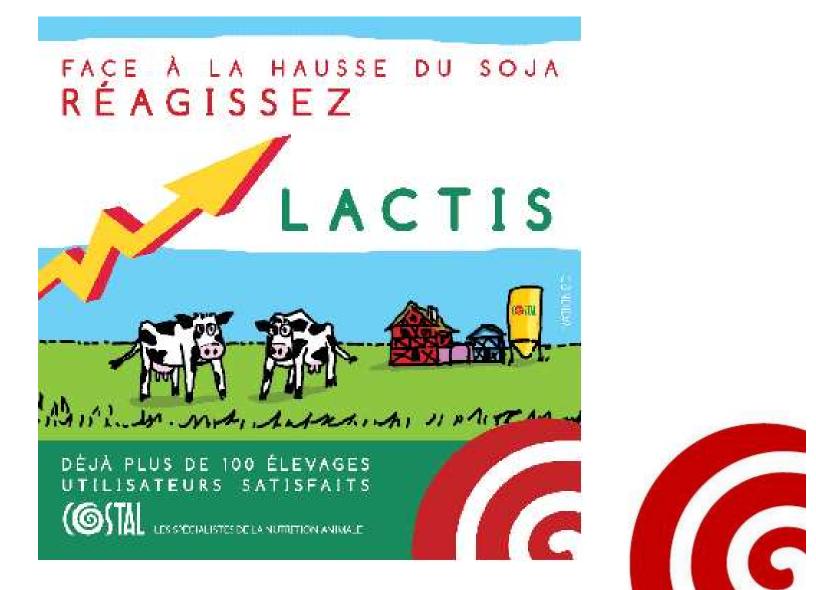
A favorable market

Up to 60% using AADI technique

0.3 % average inclusion

→ 100 t of liquid MetaSmart / year

AADI approach


The composition of the feed is changed !

It needs to be explained & demonstrated with farmers and prescriptors

It is economically efficient

Communication example

MOLSHEIM Agroalimentaire

Costal innove dans l'alimentation animale

jeudi 4 Décembre 2014

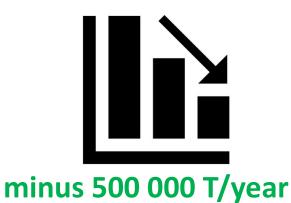
VALEUR AJOUTÉE

L'Economie, c'est d'abort, une histoire d'hommes du de femines avant de devenu une question de chiffres. Un fluir hem pair, des protes de risque, le sens du marchée et des produits qui marquemont les introvations de deman. L'agriculture et nistaement la estation avantale finn partie de ces anjeux. La concernité luisai aussi introve

Vaches laitières: l'aliment performance

Région

la phrase Un aliment pour vaches laitières qui caûte moins cher, pollue moins et améliore la qualité du lait produit... Utopie ? Pas si l'on en croit le Lorial, le laboratoire de nutrition animale, qui a mis au point une toute nouvelle gamme.



AA nutrition can help feed industry to cope with sustainability challenges

If all french dairy cows rations were balanced on AADI :

Soy use will decrease

Based on soybean yield 3T/ha & 80% yield as meal

Thank You ! Questions ?